EduConnect / app /utils /chat_rag.py
dtyago's picture
Vectordb ref caching
5cd4845
raw
history blame
13.5 kB
#list of librarys for requirement.txt
import os
import re
import hashlib
from langchain.document_loaders import PyPDFLoader
# Import embeddings module from langchain for vector representations of text
from langchain.embeddings import HuggingFaceEmbeddings
# Import text splitter for handling large texts
from langchain.text_splitter import CharacterTextSplitter
# Import vector store for database operations
from langchain.vectorstores import Chroma
# for loading of llama gguf model
from langchain.llms import LlamaCpp
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
from langchain.chains.router import MultiPromptChain
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory, VectorStoreRetrieverMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def sanitize_collection_name(email):
# Replace invalid characters with an underscore
sanitized = re.sub(r'[^a-zA-Z0-9_-]', '_', email)
# Ensure the name is within the length limits
if len(sanitized) > 63:
# Hashing the name to ensure uniqueness and length constraint
hash_suffix = hashlib.sha256(email.encode()).hexdigest()[:8]
sanitized = sanitized[:55] + "_" + hash_suffix
# Ensure it starts and ends with an alphanumeric character
if not re.match(r'^[a-zA-Z0-9].*[a-zA-Z0-9]$', sanitized):
sanitized = "a" + sanitized + "1"
return sanitized
# Modify vectordb initialization to be dynamic based on user_id
def get_vectordb_for_user(user_collection_name):
# Get Chromadb location
CHROMADB_LOC = os.getenv('CHROMADB_LOC')
vectordb = Chroma(
collection_name=user_collection_name,
embedding_function=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'),
persist_directory=f"{CHROMADB_LOC}" # Optional: Separate directory for each user's data
)
return vectordb
vectordb_cache = {}
def get_vectordb_for_user_cached(user_collection_name):
if user_collection_name not in vectordb_cache:
vectordb_cache[user_collection_name] = get_vectordb_for_user(user_collection_name)
return vectordb_cache[user_collection_name]
def pdf_to_vec(filename, user_collection_name):
# Get Chromadb location
CHROMADB_LOC = os.getenv('CHROMADB_LOC')
document = []
loader = PyPDFLoader(filename)
document.extend(loader.load()) #which library is this from?
# Initialize HuggingFaceEmbeddings with the 'sentence-transformers/all-MiniLM-L6-v2' model for generating text embeddings
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
# Initialize a CharacterTextSplitter to split the loaded documents into smaller chunks
document_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
# Use the splitter to divide the 'document' content into manageable chunks
document_chunks = document_splitter.split_documents(document) #which library is this from?
# Create a Chroma vector database from the document chunks with the specified embeddings, and set a directory for persistence
vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, collection_name=user_collection_name, persist_directory=CHROMADB_LOC) ## change to GUI path
# Persist the created vector database to disk in the specified directory
vectordb.persist() #this is mandatory?
return(vectordb)
#return collection # Return the collection as the asset
class LlamaModelSingleton:
_instance = None
def __new__(cls):
if cls._instance is None:
print('Loading LLM model...')
cls._instance = super(LlamaModelSingleton, cls).__new__(cls)
# Model loading logic
model_path = os.getenv("MODEL_PATH")
cls._instance.llm = LlamaCpp(
#streaming = True,
model_path=model_path,
n_gpu_layers=-1,
n_batch=512,
temperature=0.1,
top_p=1,
#verbose=False,
#callback_manager=callback_manager,
max_tokens=2000,
)
print(f'Model loaded from {model_path}')
return cls._instance.llm
def load_llm():
return LlamaModelSingleton()
#step 5, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt
def default_chain(llm, user_collection_name):
# Get Chromadb location
CHROMADB_LOC = os.getenv('CHROMADB_LOC')
vectordb = get_vectordb_for_user_cached(user_collection_name) # Use the dynamic vectordb based on user_id
sum_template = """
As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
our role entails:
Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.
Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.
Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.
Objective: to summarize and explain the key points.
Here the question:
{input}"""
mcq_template = """
As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
our role entails:
Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.
Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.
Objective: to create multiple choice question in this format
[question:
options A:
options B:
options C:
options D:
correct_answer:
explanation:]
Here the question:
{input}"""
prompt_infos = [
{
"name": "SUMMARIZE",
"description": "Good for summarizing and explaination ",
"prompt_template": sum_template,
},
{
"name": "MCQ",
"description": "Good for creating multiple choices questions",
"prompt_template": mcq_template,
},
]
destination_chains = {}
for p_info in prompt_infos:
name = p_info["name"]
prompt_template = p_info["prompt_template"]
#vectordb=p_info["vector"]
prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') #new
vectordb= Chroma(persist_directory = CHROMADB_LOC, embedding_function = embeddings) #new
retriever = vectordb.as_retriever()#new
memory = VectorStoreRetrieverMemory(retriever=retriever) #new
chain = LLMChain(llm=llm, prompt=prompt, verbose=True, memory=memory) #new memory=memory
destination_chains[name] = chain
#default_chain = ConversationChain(llm=llm, output_key="text")
#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
default_chain = ConversationalRetrievalChain.from_llm(llm=llm,
retriever=vectordb.as_retriever(search_kwargs={'k': 3}),
verbose=True, output_key="text" )
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
return default_chain,router_chain,destination_chains
# Adjust llm_infer to accept user_id and use it for user-specific processing
def llm_infer(user_collection_name, prompt):
llm = load_llm() # load_llm is singleton for entire system
vectordb = get_vectordb_for_user_cached(user_collection_name) # Vector collection for each us.
default_chain, router_chain, destination_chains = get_or_create_chain(user_collection_name, llm) # Now user-specific
chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
#memory=ConversationBufferMemory(k=2), # memory_key='chat_history', return_messages=True
verbose=True,
)
response = chain.run(prompt)
return response
# Assuming a simplified caching mechanism for demonstration
chain_cache = {}
def get_or_create_chain(user_collection_name, llm):
if 'default_chain' in chain_cache and 'router_chain' in chain_cache:
default_chain = chain_cache['default_chain']
router_chain = chain_cache['router_chain']
destination_chains = chain_cache['destination_chains']
else:
vectordb = get_vectordb_for_user_cached(user_collection_name) # User-specific vector database
sum_template = """
As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
our role entails:
Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.
Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.
Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.
Objective: to summarize and explain the key points.
Here the question:
{input}"""
mcq_template = """
As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
our role entails:
Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.
Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.
Objective: to create multiple choice question in this format
[question:
options A:
options B:
options C:
options D:
correct_answer:
explanation:]
Here the question:
{input}"""
prompt_infos = [
{
"name": "SUMMARIZE",
"description": "Good for summarizing and explaination ",
"prompt_template": sum_template,
},
{
"name": "MCQ",
"description": "Good for creating multiple choices questions",
"prompt_template": mcq_template,
},
]
destination_chains = {}
for p_info in prompt_infos:
name = p_info["name"]
prompt_template = p_info["prompt_template"]
prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
chain = LLMChain(llm=llm, prompt=prompt)
destination_chains[name] = chain
#default_chain = ConversationChain(llm=llm, output_key="text")
#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
default_chain = ConversationalRetrievalChain.from_llm(llm=llm,
retriever=vectordb.as_retriever(search_kwargs={'k': 3}),
verbose=True, output_key="text" )
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
#
chain_cache['default_chain'] = default_chain
chain_cache['router_chain'] = router_chain
chain_cache['destination_chains'] = destination_chains
# Here we can adapt the chains if needed based on the user_id, for example, by adjusting the vectordb retriever
# This is where user-specific adaptations occur
return default_chain, router_chain, destination_chains