File size: 11,894 Bytes
d131d3b
10399f1
d131d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10399f1
 
 
 
 
 
 
 
 
 
 
 
 
 
d131d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
10399f1
d131d3b
 
 
 
 
 
 
10399f1
 
 
 
 
 
 
 
 
 
 
d131d3b
10399f1
d131d3b
 
 
 
 
 
 
10399f1
 
 
d131d3b
 
10399f1
 
 
d131d3b
10399f1
 
 
 
d131d3b
10399f1
d131d3b
10399f1
d131d3b
 
 
 
 
 
 
 
 
 
10399f1
d131d3b
10399f1
d131d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10399f1
 
 
 
 
 
 
 
d131d3b
 
 
 
 
 
 
 
 
 
10399f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#list of librarys for requirement.txt
import os
from langchain.document_loaders import PyPDFLoader

# Import embeddings module from langchain for vector representations of text
from langchain.embeddings import HuggingFaceEmbeddings

# Import text splitter for handling large texts
from langchain.text_splitter import CharacterTextSplitter

# Import vector store for database operations
from langchain.vectorstores import Chroma

# for loading of llama gguf model
from langchain.llms import LlamaCpp

from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE

from langchain.chains.router import MultiPromptChain
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain

from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

CHROMADB_LOC = "/home/user/data/chromadb"

# Modify vectordb initialization to be dynamic based on user_id
def get_vectordb_for_user(user_id):
    collection_name = f"user_{user_id}_collection"
    vectordb = Chroma(
        collection_name=collection_name,
        embedding_function=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'),
        persist_directory=f"{CHROMADB_LOC}/{collection_name}", # Optional: Separate directory for each user's data
    )
    return vectordb


def pdf_to_vec(filename, collection_name):
    document = []
    loader = PyPDFLoader(filename)
    document.extend(loader.load()) #which library is this from?

    # Initialize HuggingFaceEmbeddings with the 'sentence-transformers/all-MiniLM-L6-v2' model for generating text embeddings
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')

    # Initialize a CharacterTextSplitter to split the loaded documents into smaller chunks
    document_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)

    # Use the splitter to divide the 'document' content into manageable chunks
    document_chunks = document_splitter.split_documents(document) #which library is this from?

    # Create a Chroma vector database from the document chunks with the specified embeddings, and set a directory for persistence
    vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, collection_name=collection_name, persist_directory=CHROMADB_LOC) ## change to GUI path

    # Persist the created vector database to disk in the specified directory
    vectordb.persist() #this is mandatory?

    return(vectordb)
    #return collection  # Return the collection as the asset

class LlamaModelSingleton:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            print('Loading LLM model...')
            cls._instance = super(LlamaModelSingleton, cls).__new__(cls)
            
            # Model loading logic
            model_path = os.getenv("MODEL_PATH")
            cls._instance.llm = LlamaCpp(
                #streaming = True,
                model_path=model_path,
                #n_gpu_layers=-1,
                n_batch=512,
                temperature=0.1,
                top_p=1,
                #verbose=False,
                #callback_manager=callback_manager,
                max_tokens=2000,
            )
            print(f'Model loaded from {model_path}')
        return cls._instance.llm


def load_llm():
    return LlamaModelSingleton()



#step 5, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt
def default_chain(llm, user_id):
    vectordb = get_vectordb_for_user(user_id)  # Use the dynamic vectordb based on user_id
    sum_template = """
    As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.

    our role entails:

    Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.
    Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.
    Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.

    Objective: to summarize and explain the key points.
    Here the question:
    {input}"""

    mcq_template = """
    As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.

    our role entails:
    Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.
    Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.

    Objective: to create multiple choice question in this format
    [question:
    options A:
    options B:
    options C:
    options D:
    correct_answer:
    explanation:]

    Here the question:
    {input}"""

    prompt_infos = [
        {
            "name": "SUMMARIZE",
            "description": "Good for summarizing and explaination ",
            "prompt_template": sum_template,
        },
        {
            "name": "MCQ",
            "description": "Good for creating multiple choices questions",
            "prompt_template": mcq_template,
        },
    ]

    destination_chains = {}

    for p_info in prompt_infos:
        name = p_info["name"]
        prompt_template = p_info["prompt_template"]
        prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
        chain = LLMChain(llm=llm, prompt=prompt)
        destination_chains[name] = chain
    #default_chain = ConversationChain(llm=llm, output_key="text")
    #memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)

    default_chain = ConversationalRetrievalChain.from_llm(llm=llm,
                                                retriever=vectordb.as_retriever(search_kwargs={'k': 3}),
                                                verbose=True, output_key="text" )

    destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
    destinations_str = "\n".join(destinations)
    router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
    router_prompt = PromptTemplate(
        template=router_template,
        input_variables=["input"],
        output_parser=RouterOutputParser(),
    )
    router_chain = LLMRouterChain.from_llm(llm, router_prompt)

    return default_chain,router_chain,destination_chains

# Adjust llm_infer to accept user_id and use it for user-specific processing
def llm_infer(user_id, prompt):
    
    llm = load_llm()  # load_llm is singleton for entire system
    
    vectordb = get_vectordb_for_user(user_id) # Vector collection for each us. 
    
    default_chain, router_chain, destination_chains = get_or_create_chain(user_id, llm)  # Now user-specific

    chain = MultiPromptChain(
        router_chain=router_chain,
        destination_chains=destination_chains,
        default_chain=default_chain,
        #memory=ConversationBufferMemory(k=2), # memory_key='chat_history', return_messages=True
        verbose=True,
    )
    response = chain.run(prompt)

    return response

# Assuming a simplified caching mechanism for demonstration
chain_cache = {}

def get_or_create_chain(user_id, llm):
    if 'default_chain' in chain_cache and 'router_chain' in chain_cache:
        default_chain = chain_cache['default_chain']
        router_chain = chain_cache['router_chain']
        destination_chains = chain_cache['destination_chains']
    else:
        vectordb = get_vectordb_for_user(user_id)  # User-specific vector database
        sum_template = """
        As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.

        our role entails:

        Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.
        Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.
        Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.

        Objective: to summarize and explain the key points.
        Here the question:
        {input}"""

        mcq_template = """
        As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.

        our role entails:
        Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.
        Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.

        Objective: to create multiple choice question in this format
        [question:
        options A:
        options B:
        options C:
        options D:
        correct_answer:
        explanation:]

        Here the question:
        {input}"""

        prompt_infos = [
            {
                "name": "SUMMARIZE",
                "description": "Good for summarizing and explaination ",
                "prompt_template": sum_template,
            },
            {
                "name": "MCQ",
                "description": "Good for creating multiple choices questions",
                "prompt_template": mcq_template,
            },
        ]

        destination_chains = {}

        for p_info in prompt_infos:
            name = p_info["name"]
            prompt_template = p_info["prompt_template"]
            prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
            chain = LLMChain(llm=llm, prompt=prompt)
            destination_chains[name] = chain
        #default_chain = ConversationChain(llm=llm, output_key="text")
        #memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)

        default_chain = ConversationalRetrievalChain.from_llm(llm=llm,
                                                    retriever=vectordb.as_retriever(search_kwargs={'k': 3}),
                                                    verbose=True, output_key="text" )

        destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
        destinations_str = "\n".join(destinations)
        router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
        router_prompt = PromptTemplate(
            template=router_template,
            input_variables=["input"],
            output_parser=RouterOutputParser(),
        )
        router_chain = LLMRouterChain.from_llm(llm, router_prompt)
#
        chain_cache['default_chain'] = default_chain
        chain_cache['router_chain'] = router_chain
        chain_cache['destination_chains'] = destination_chains
    
    # Here we can adapt the chains if needed based on the user_id, for example, by adjusting the vectordb retriever
    # This is where user-specific adaptations occur

    return default_chain, router_chain, destination_chains