import gradio as gr import pinecone from sentence_transformers import SentenceTransformer import torch from splade.models.transformer_rep import Splade from transformers import AutoTokenizer from datasets import load_dataset pinecone.init( api_key='884344f6-d820-4bc8-9edf-4157373df452', environment='gcp-starter' ) index = pinecone.Index('pubmed-splade') device = 'cuda' if torch.cuda.is_available() else 'cpu' # check device being run on if device != 'cuda': print("==========\n"+ "WARNING: You are not running on GPU so this may be slow.\n"+ "\n==========") dense_model = SentenceTransformer( 'msmarco-bert-base-dot-v5', device=device ) sparse_model_id = 'naver/splade-cocondenser-ensembledistil' sparse_model = Splade(sparse_model_id, agg='max') sparse_model.to(device) # moves to GPU if possible sparse_model.eval() tokenizer = AutoTokenizer.from_pretrained(sparse_model_id) data = load_dataset('Binaryy/cream_listings', split='train') df = data.to_pandas() def encode(text: str): # create dense vec dense_vec = dense_model.encode(text).tolist() # create sparse vec input_ids = tokenizer(text, return_tensors='pt') with torch.no_grad(): sparse_vec = sparse_model( d_kwargs=input_ids.to(device) )['d_rep'].squeeze() # convert to dictionary format indices = sparse_vec.nonzero().squeeze().cpu().tolist() values = sparse_vec[indices].cpu().tolist() sparse_dict = {"indices": indices, "values": values} # return vecss return dense_vec, sparse_dict def search(query): dense, sparse = encode(query) # query xc = index.query( vector=dense, sparse_vector=sparse, top_k=5, # how many results to return include_metadata=True ) match_ids = [match['id'].split('-')[0] for match in xc['matches']] # Query the existing DataFrame based on 'id' filtered_df = df[df['_id'].isin(match_ids)] attributes_to_extract = ['_id', 'title', 'location', 'features', 'description', 'images', 'videos', 'available', 'price', 'attachedDocument', 'year', 'carCondition', 'engineType', 'colour', 'model', 'noOfBed', 'noOfBathroom', 'locationISO', 'forRent', 'views', 'thoseWhoSaved', 'createdAt', 'updatedAt', '__v', 'category._id', 'category.title', 'category.slug', 'category.isAdminAllowed', 'category.createdAt', 'category.updatedAt', 'category.__v', 'postedBy.pageViews.value', 'postedBy.pageViews.users', 'postedBy.totalSaved.value', 'postedBy.totalSaved.users', 'postedBy._id', 'postedBy.firstName', 'postedBy.lastName', 'postedBy.about', 'postedBy.cover', 'postedBy.email', 'postedBy.password', 'postedBy.isAdmin', 'postedBy.savedListing', 'postedBy.isVerified', 'postedBy.verifiedProfilePicture', 'postedBy.profilePicture', 'postedBy.pronoun', 'postedBy.userType', 'postedBy.accountType', 'postedBy.subscribed', 'postedBy.noOfSubscription', 'postedBy.totalListing', 'postedBy.sellerType', 'postedBy.createdAt', 'postedBy.updatedAt', 'postedBy.__v', 'postedBy.address', 'postedBy.city', 'postedBy.country', 'postedBy.gender', 'postedBy.nationality', 'postedBy.verificationType', 'postedBy.dob', 'postedBy.locationISO', 'postedBy.state', 'postedBy.zipCode', 'postedBy.otherNames', 'postedBy.facebookUrl', 'postedBy.instagramUrl', 'postedBy.phoneNumber1', 'postedBy.phoneNumber2', 'postedBy.websiteUrl', 'postedBy.accountName', 'postedBy.accountNo', 'postedBy.bankName', 'string_features', 'complete_description'] extracted_data = filtered_df[attributes_to_extract] result_json = extracted_data.to_json(orient='records') return result_json # Create a Gradio interface iface = gr.Interface( fn=search, inputs="text", outputs="json", title="Semantic Search Prototype", description="Enter your query to search.", ) # Launch the Gradio interface iface.launch(share=True)