from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "roneneldan/TinyStories-1M" def load(): global model global tokenizer model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") output_ids = model.generate( input_ids, no_repeat_ngram_size=2, max_new_tokens=200, eos_token_id=tokenizer.eos_token_id, temperature=0.2 ) return tokenizer.decode(output_ids[0], skip_special_tokens=True)