from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # https://www.youtube.com/watch?v=irjYqV6EebU model_name = "facebook/blenderbot-1B-distill" # https://huggingface.co/models?sort=trending&search=facebook%2Fblenderbot # facebook/blenderbot-3B # facebook/blenderbot-1B-distill # facebook/blenderbot-400M-distill # facebook/blenderbot-90M # facebook/blenderbot_small-90M def load(): global model global tokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(input_text): # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate output using the model output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id) return tokenizer.decode(output_ids[0], skip_special_tokens=True)