File size: 10,053 Bytes
5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c 0e88dcb 5ca0a1c ed98924 f13254e 5ca0a1c ed98924 f13254e 5ca0a1c f13254e 5ca0a1c 0a8bf2e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c 613b97e 5ca0a1c 613b97e f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e 5ca0a1c f13254e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import whisper
from pytubefix import YouTube
from pytubefix.cli import on_progress
import requests
import time
import streamlit as st
from streamlit_lottie import st_lottie
import numpy as np
import os
from typing import Iterator
from io import StringIO
from utils import write_vtt, write_srt
import ffmpeg
from languages import LANGUAGES
import torch
from zipfile import ZipFile
from io import BytesIO
import base64
import pathlib
import re
st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide")
torch.cuda.is_available()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Model options: tiny, base, small, medium, large
loaded_model = whisper.load_model("small", device=DEVICE)
current_size = "None"
# Define a function that we can use to load lottie files from a link.
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
APP_DIR = pathlib.Path(__file__).parent.absolute()
LOCAL_DIR = APP_DIR / "local_youtube"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)
col1, col2 = st.columns([1, 3])
with col1:
lottie = load_lottieurl("https://assets8.lottiefiles.com/packages/lf20_jh9gfdye.json")
st_lottie(lottie)
with col2:
st.write("""
## Auto Subtitled Video Generator
##### Input a YouTube video link and get a video with subtitles.
###### ➠ If you want to transcribe the video in its original language, select the task as "Transcribe"
###### ➠ If you want to translate the subtitles to English, select the task as "Translate"
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)
def download_video(link):
yt = YouTube(link, on_progress_callback=on_progress)
ys = yt.streams.get_highest_resolution()
video = ys.download(filename=f"{save_dir}/youtube_video.mp4")
return video
def convert(seconds):
return time.strftime("%H:%M:%S", time.gmtime(seconds))
def change_model(current_size, size):
if current_size != size:
loaded_model = whisper.load_model(size)
return loaded_model
else:
raise Exception("Model size is the same as the current size.")
def inference(link, loaded_model, task):
yt = YouTube(link, on_progress_callback=on_progress)
ys = yt.streams.get_audio_only()
path = ys.download(filename=f"{save_dir}/audio.mp3", mp3=True)
if task == "Transcribe":
options = dict(task="transcribe", best_of=5)
results = loaded_model.transcribe(path, **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
elif task == "Translate":
options = dict(task="translate", best_of=5)
results = loaded_model.transcribe(path, **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
else:
raise ValueError("Task not supported")
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def get_language_code(language):
if language in LANGUAGES.keys():
detected_language = LANGUAGES[language]
return detected_language
else:
raise ValueError("Language not supported")
def generate_subtitled_video(video, audio, transcript):
video_file = ffmpeg.input(video)
audio_file = ffmpeg.input(audio)
ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("youtube_sub.mp4").run(quiet=True, overwrite_output=True)
video_with_subs = open("youtube_sub.mp4", "rb")
return video_with_subs
def main():
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large-v3"], index=1)
loaded_model = change_model(current_size, size)
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
link = st.text_input("YouTube Link (The longer the video, the longer the processing time)", placeholder="Input YouTube link and press enter")
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
if task == "Transcribe":
if st.button("Transcribe"):
with st.spinner("Transcribing the video..."):
results = inference(link, loaded_model, task)
video = download_video(link)
lang = results[3]
detected_language = get_language_code(lang)
col3, col4 = st.columns(2)
with col3:
st.video(video)
# Split result["text"] on !,? and . , but save the punctuation
sentences = re.split("([!?.])", results[0])
# Join the punctuation back to the sentences
sentences = ["".join(i) for i in zip(sentences[0::2], sentences[1::2])]
text = "\n\n".join(sentences)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(text)
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+",encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+",encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(video, f"{save_dir}/audio.mp3", "transcript.srt")
st.video(video_with_subs)
st.balloons()
zipObj = ZipFile("YouTube_transcripts_and_video.zip", "w")
zipObj.write("transcript.txt")
zipObj.write("transcript.vtt")
zipObj.write("transcript.srt")
zipObj.write("youtube_sub.mp4")
zipObj.close()
ZipfileDotZip = "YouTube_transcripts_and_video.zip"
with open(ZipfileDotZip, "rb") as f:
datazip = f.read()
b64 = base64.b64encode(datazip).decode()
href = f"<a href=\"data:file/zip;base64,{b64}\" download='{ZipfileDotZip}'>\
Download Transcripts and Video\
</a>"
st.markdown(href, unsafe_allow_html=True)
elif task == "Translate":
if st.button("Translate to English"):
with st.spinner("Translating to English..."):
results = inference(link, loaded_model, task)
video = download_video(link)
lang = results[3]
detected_language = get_language_code(lang)
col3, col4 = st.columns(2)
with col3:
st.video(video)
# Split result["text"] on !,? and . , but save the punctuation
sentences = re.split("([!?.])", results[0])
# Join the punctuation back to the sentences
sentences = ["".join(i) for i in zip(sentences[0::2], sentences[1::2])]
text = "\n\n".join(sentences)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(text)
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+",encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+",encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(video, f"{save_dir}/audio.mp3", "transcript.srt")
st.video(video_with_subs)
st.balloons()
zipObj = ZipFile("YouTube_transcripts_and_video.zip", "w")
zipObj.write("transcript.txt")
zipObj.write("transcript.vtt")
zipObj.write("transcript.srt")
zipObj.write("youtube_sub.mp4")
zipObj.close()
ZipfileDotZip = "YouTube_transcripts_and_video.zip"
with open(ZipfileDotZip, "rb") as f:
datazip = f.read()
b64 = base64.b64encode(datazip).decode()
href = f"<a href=\"data:file/zip;base64,{b64}\" download='{ZipfileDotZip}'>\
Download Transcripts and Video\
</a>"
st.markdown(href, unsafe_allow_html=True)
else:
st.info("Please select a task.")
if __name__ == "__main__":
main()
|