Phi-3.5-chat / app.py
AyoubChLin's picture
Update app.py
aa204f5 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Initialize model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-mini-instruct",
device_map="cpu",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
# Create pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
# Generation arguments
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
def chat(message, history, system_prompt):
# Prepare messages
messages = [
{"role": "system", "content": system_prompt},
]
# Add history to messages
for human, assistant in history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
# Add current message
messages.append({"role": "user", "content": message})
# Generate response
output = pipe(messages, **generation_args)
response = output[0]['generated_text']
return response
# Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
system_prompt = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.")
def respond(message, chat_history):
bot_message = chat(message, chat_history, system_prompt.value)
chat_history.append((message, bot_message))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()