File size: 10,484 Bytes
224d97a
51fbf43
650b332
 
224d97a
650b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a273c6a
650b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224d97a
 
650b332
 
 
 
 
224d97a
 
 
 
 
 
 
 
 
 
650b332
224d97a
8375d92
650b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224d97a
650b332
 
 
 
 
 
 
 
 
 
 
 
224d97a
650b332
 
 
 
 
 
 
 
 
 
 
 
 
 
224d97a
 
 
650b332
 
 
 
 
 
 
 
 
 
 
224d97a
 
 
650b332
 
 
224d97a
650b332
 
224d97a
 
 
 
 
 
 
650b332
224d97a
650b332
224d97a
650b332
 
 
224d97a
650b332
224d97a
650b332
 
224d97a
650b332
224d97a
650b332
 
 
 
 
 
 
 
 
224d97a
 
 
 
650b332
 
 
 
 
 
a1b850e
650b332
224d97a
 
a1b850e
224d97a
 
 
 
 
 
650b332
 
 
 
 
224d97a
 
 
 
 
 
 
 
 
 
 
 
9c24db9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import spaces
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

import sys
sys.path.insert(0, './diffusers/src')

import torch
import torch.nn as nn

#Hack for ZeroGPU
torch.jit.script = lambda f: f
####

from huggingface_hub import snapshot_download
from diffusers import DPMSolverMultistepScheduler
from diffusers.models import ControlNetModel

from transformers import CLIPVisionModelWithProjection

from pipeline import OmniZeroPipeline
from insightface.app import FaceAnalysis
from controlnet_aux import ZoeDetector
from utils import draw_kps, load_and_resize_image, align_images

import cv2
import numpy as np

base_model="stablediffusionapi/clarity-xl"

snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
face_analysis.prepare(ctx_id=0, det_size=(640, 640))

dtype = torch.float16

ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    "h94/IP-Adapter", 
    subfolder="models/image_encoder",
    torch_dtype=dtype,
).to("cuda")

zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")

identitiynet_path = "okaris/face-controlnet-xl"
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")

zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")

pipeline = OmniZeroPipeline.from_pretrained(
    base_model,
    controlnet=[identitynet, zoedepthnet],
    torch_dtype=dtype,
    image_encoder=ip_adapter_plus_image_encoder,
).to("cuda")

config = pipeline.scheduler.config
config["timestep_spacing"] = "trailing"
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])

def get_largest_face_embedding_and_kps(image, target_image=None):
    face_info = face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
    if len(face_info) == 0:
        return None, None
    largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
    face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
    if target_image is None:
        target_image = image
    zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
    face_kps_image = draw_kps(zeros, largest_face['kps'])
    return face_embedding, face_kps_image

@spaces.GPU()
def generate(
    prompt="A person",
    composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
    style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584",
    identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58",
    base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
    seed=42,
    negative_prompt="blurry, out of focus",
    guidance_scale=3.0,
    number_of_images=1,
    number_of_steps=10,
    base_image_strength=0.15,
    composition_image_strength=1.0,
    style_image_strength=1.0,
    identity_image_strength=1.0,
    depth_image=None,
    depth_image_strength=0.5,
    progress=gr.Progress(track_tqdm=True)
):
    resolution = 1280

    if base_image is not None:
        base_image = load_and_resize_image(base_image, resolution, resolution)
    else:
        if composition_image is not None:
            base_image = load_and_resize_image(composition_image, resolution, resolution)
        else:
            raise ValueError("You must provide a base image or a composition image")

    if depth_image is None:
        depth_image = zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
    else:
        depth_image = load_and_resize_image(depth_image, resolution, resolution)

    base_image, depth_image = align_images(base_image, depth_image)

    if composition_image is not None:
        composition_image = load_and_resize_image(composition_image, resolution, resolution)
    else: 
        composition_image = base_image

    if style_image is not None:
        style_image = load_and_resize_image(style_image, resolution, resolution)
    else:
        raise ValueError("You must provide a style image")
    
    if identity_image is not None:
        identity_image = load_and_resize_image(identity_image, resolution, resolution)
    else:
        raise ValueError("You must provide an identity image")
    
    face_embedding_identity_image, target_kps = get_largest_face_embedding_and_kps(identity_image, base_image)
    if face_embedding_identity_image is None:
        raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
    
    face_embedding_base_image, face_kps_base_image = get_largest_face_embedding_and_kps(base_image)
    if face_embedding_base_image is not None:
        target_kps = face_kps_base_image

    pipeline.set_ip_adapter_scale([identity_image_strength,
        {
            "down": { "block_2": [0.0, 0.0] },
            "up": { "block_0": [0.0, style_image_strength, 0.0] }
        },
        {
            "down": { "block_2": [0.0, composition_image_strength] },
            "up": { "block_0": [0.0, 0.0, 0.0] }
        }
    ])

    generator = torch.Generator(device="cpu").manual_seed(seed)

    images = pipeline(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
        image=base_image,
        control_image=[target_kps, depth_image],
        controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
        identity_control_indices=[(0,0)],
        num_inference_steps=number_of_steps, 
        num_images_per_prompt=number_of_images,
        strength=(1-base_image_strength),
        generator=generator,
        seed=seed,
    ).images

    return images

#Move the components in the example fields outside so they are available when gr.Examples is instantiated


with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center'>Omni Zero</h1>")
    gr.Markdown("<h4 style='text-align: center'>A diffusion pipeline for zero-shot stylized portrait creation [<a href='https://github.com/okaris/omni-zero' target='_blank'>GitHub</a>], [<a href='https://styleof.com/s/remix-yourself' target='_blank'>StyleOf Remix Yourself</a>]</h4>")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", value="A person")
            with gr.Row():
                negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus")
            with gr.Row():
                with gr.Column(min_width=140):
                    with gr.Row():
                        composition_image = gr.Image(label="Composition")
                    with gr.Row():
                        composition_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
            #with gr.Row():
                with gr.Column(min_width=140):
                    with gr.Row():
                        style_image = gr.Image(label="Style Image")
                    with gr.Row():
                        style_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
                with gr.Column(min_width=140):
                    with gr.Row():
                        identity_image = gr.Image(label="Identity Image")
                    with gr.Row():
                        identity_image_strength = gr.Slider(label="Strenght",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
            with gr.Accordion("Advanced options", open=False):
                with gr.Row():
                    with gr.Column(min_width=140):
                            with gr.Row():
                                base_image = gr.Image(label="Base Image")
                            with gr.Row():
                                base_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=0.15, min_width=120)
                #    with gr.Column(min_width=140):
                #     with gr.Row():
                #         depth_image = gr.Image(label="depth_image", value=None)
                #     with gr.Row():
                #         depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5)
                            
                with gr.Row():
                    seed = gr.Slider(label="Seed",step=1, minimum=0, maximum=10000000, value=42)
                    number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1)
                with gr.Row():
                    guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0)
                    number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=28)
            
        with gr.Column():
            with gr.Row():
                out = gr.Gallery(label="Output(s)",format="png")
            with gr.Row():
                # clear = gr.Button("Clear")
                submit = gr.Button("Generate")
        
                submit.click(generate, inputs=[
                    prompt,
                    composition_image,
                    style_image,
                    identity_image,
                    base_image,
                    seed,
                    negative_prompt,
                    guidance_scale,
                    number_of_images,
                    number_of_steps,
                    base_image_strength,
                    composition_image_strength,
                    style_image_strength,
                    identity_image_strength,
                    ],
                    outputs=[out]
                )
        # clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
    demo.launch()