Spaces:
Runtime error
Runtime error
File size: 10,484 Bytes
224d97a 51fbf43 650b332 224d97a 650b332 a273c6a 650b332 224d97a 650b332 224d97a 650b332 224d97a 8375d92 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 224d97a 650b332 a1b850e 650b332 224d97a a1b850e 224d97a 650b332 224d97a 9c24db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import spaces
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
sys.path.insert(0, './diffusers/src')
import torch
import torch.nn as nn
#Hack for ZeroGPU
torch.jit.script = lambda f: f
####
from huggingface_hub import snapshot_download
from diffusers import DPMSolverMultistepScheduler
from diffusers.models import ControlNetModel
from transformers import CLIPVisionModelWithProjection
from pipeline import OmniZeroPipeline
from insightface.app import FaceAnalysis
from controlnet_aux import ZoeDetector
from utils import draw_kps, load_and_resize_image, align_images
import cv2
import numpy as np
base_model="stablediffusionapi/clarity-xl"
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
face_analysis.prepare(ctx_id=0, det_size=(640, 640))
dtype = torch.float16
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=dtype,
).to("cuda")
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")
identitiynet_path = "okaris/face-controlnet-xl"
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")
zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
pipeline = OmniZeroPipeline.from_pretrained(
base_model,
controlnet=[identitynet, zoedepthnet],
torch_dtype=dtype,
image_encoder=ip_adapter_plus_image_encoder,
).to("cuda")
config = pipeline.scheduler.config
config["timestep_spacing"] = "trailing"
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
def get_largest_face_embedding_and_kps(image, target_image=None):
face_info = face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
return None, None
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
if target_image is None:
target_image = image
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
face_kps_image = draw_kps(zeros, largest_face['kps'])
return face_embedding, face_kps_image
@spaces.GPU()
def generate(
prompt="A person",
composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584",
identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58",
base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
seed=42,
negative_prompt="blurry, out of focus",
guidance_scale=3.0,
number_of_images=1,
number_of_steps=10,
base_image_strength=0.15,
composition_image_strength=1.0,
style_image_strength=1.0,
identity_image_strength=1.0,
depth_image=None,
depth_image_strength=0.5,
progress=gr.Progress(track_tqdm=True)
):
resolution = 1280
if base_image is not None:
base_image = load_and_resize_image(base_image, resolution, resolution)
else:
if composition_image is not None:
base_image = load_and_resize_image(composition_image, resolution, resolution)
else:
raise ValueError("You must provide a base image or a composition image")
if depth_image is None:
depth_image = zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
else:
depth_image = load_and_resize_image(depth_image, resolution, resolution)
base_image, depth_image = align_images(base_image, depth_image)
if composition_image is not None:
composition_image = load_and_resize_image(composition_image, resolution, resolution)
else:
composition_image = base_image
if style_image is not None:
style_image = load_and_resize_image(style_image, resolution, resolution)
else:
raise ValueError("You must provide a style image")
if identity_image is not None:
identity_image = load_and_resize_image(identity_image, resolution, resolution)
else:
raise ValueError("You must provide an identity image")
face_embedding_identity_image, target_kps = get_largest_face_embedding_and_kps(identity_image, base_image)
if face_embedding_identity_image is None:
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
face_embedding_base_image, face_kps_base_image = get_largest_face_embedding_and_kps(base_image)
if face_embedding_base_image is not None:
target_kps = face_kps_base_image
pipeline.set_ip_adapter_scale([identity_image_strength,
{
"down": { "block_2": [0.0, 0.0] },
"up": { "block_0": [0.0, style_image_strength, 0.0] }
},
{
"down": { "block_2": [0.0, composition_image_strength] },
"up": { "block_0": [0.0, 0.0, 0.0] }
}
])
generator = torch.Generator(device="cpu").manual_seed(seed)
images = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
image=base_image,
control_image=[target_kps, depth_image],
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
identity_control_indices=[(0,0)],
num_inference_steps=number_of_steps,
num_images_per_prompt=number_of_images,
strength=(1-base_image_strength),
generator=generator,
seed=seed,
).images
return images
#Move the components in the example fields outside so they are available when gr.Examples is instantiated
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center'>Omni Zero</h1>")
gr.Markdown("<h4 style='text-align: center'>A diffusion pipeline for zero-shot stylized portrait creation [<a href='https://github.com/okaris/omni-zero' target='_blank'>GitHub</a>], [<a href='https://styleof.com/s/remix-yourself' target='_blank'>StyleOf Remix Yourself</a>]</h4>")
with gr.Row():
with gr.Column():
with gr.Row():
prompt = gr.Textbox(label="Prompt", value="A person")
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus")
with gr.Row():
with gr.Column(min_width=140):
with gr.Row():
composition_image = gr.Image(label="Composition")
with gr.Row():
composition_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
#with gr.Row():
with gr.Column(min_width=140):
with gr.Row():
style_image = gr.Image(label="Style Image")
with gr.Row():
style_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
with gr.Column(min_width=140):
with gr.Row():
identity_image = gr.Image(label="Identity Image")
with gr.Row():
identity_image_strength = gr.Slider(label="Strenght",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
with gr.Column(min_width=140):
with gr.Row():
base_image = gr.Image(label="Base Image")
with gr.Row():
base_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=0.15, min_width=120)
# with gr.Column(min_width=140):
# with gr.Row():
# depth_image = gr.Image(label="depth_image", value=None)
# with gr.Row():
# depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5)
with gr.Row():
seed = gr.Slider(label="Seed",step=1, minimum=0, maximum=10000000, value=42)
number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0)
number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=28)
with gr.Column():
with gr.Row():
out = gr.Gallery(label="Output(s)",format="png")
with gr.Row():
# clear = gr.Button("Clear")
submit = gr.Button("Generate")
submit.click(generate, inputs=[
prompt,
composition_image,
style_image,
identity_image,
base_image,
seed,
negative_prompt,
guidance_scale,
number_of_images,
number_of_steps,
base_image_strength,
composition_image_strength,
style_image_strength,
identity_image_strength,
],
outputs=[out]
)
# clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |