Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import logging | |
import random | |
from PIL import Image | |
from Utils import MingleModel | |
logging.set_verbosity_error() | |
def get_concat_h(images): | |
widths, heights = zip(*(i.size for i in images)) | |
total_width = sum(widths) | |
max_height = max(heights) | |
dst = Image.new('RGB', (total_width, max_height)) | |
x_offset = 0 | |
for im in images: | |
dst.paste(im, (x_offset,0)) | |
x_offset += im.size[0] | |
return dst | |
mingle_model = MingleModel() | |
def mingle_prompts(first_prompt, second_prompt): | |
imgs = [] | |
text_input1 = mingle_model.do_tokenizer(first_prompt) | |
text_input2 = mingle_model.do_tokenizer(second_prompt) | |
with torch.no_grad(): | |
text_embeddings1 = mingle_model.get_text_encoder(text_input1) | |
text_embeddings2 = mingle_model.get_text_encoder(text_input2) | |
rand_generator = random.randint(1, 2048) | |
# Mix them together | |
# mix_factors = [0.1, 0.3, 0.5, 0.7, 0.9] | |
mix_factors = [0.5] | |
for mix_factor in mix_factors: | |
mixed_embeddings = (text_embeddings1 * mix_factor + text_embeddings2 * (1 - mix_factor)) | |
# Generate! | |
steps = 20 | |
guidence_scale = 8.0 | |
img = mingle_model.generate_with_embs(mixed_embeddings, rand_generator, num_inference_steps=steps, | |
guidance_scale=guidence_scale) | |
imgs.append(img) | |
return get_concat_h(imgs) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
''' | |
<h1 style="text-align: center;"> Fashion Generator GAN</h1> | |
''') | |
gr.Markdown( | |
''' | |
<h3 style="text-align: center;"> Note : the gan is extremely resource extensive, so it running the inference on cpu takes long time . kindly wait patiently while the model generates the output. </h3> | |
''') | |
gr.Markdown( | |
''' | |
<p style="text-align: center;">generated an image as an average of 2 prompts inserted !!</p> | |
''') | |
first_prompt = gr.Textbox(label="first_prompt") | |
second_prompt = gr.Textbox(label="second_prompt") | |
greet_btn = gr.Button("Submit") | |
# gr.Markdown("## Text Examples") | |
# gr.Examples([['batman, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic', | |
# 'venom, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic'], | |
# ['A mouse', 'A leopard']], [first_prompt, second_prompt]) | |
gr.Markdown("# Output Results") | |
output = gr.Image(shape=(512,512)) | |
greet_btn.click(fn=mingle_prompts, inputs=[first_prompt, second_prompt], outputs=[output]) | |
demo.launch() | |