Spaces:
Anush008
/
Runtime error

export / app.py
Felix Marty
add requirement
8ffc66a
raw
history blame
2.6 kB
import csv
import datetime
import os
from typing import Optional
import gradio as gr
from onnx_export import convert
from huggingface_hub import HfApi, Repository
DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
repo: Optional[Repository] = None
if HF_TOKEN:
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
def onnx_export(token: str, model_id: str, task: str) -> str:
if token == "" or model_id == "":
return """
### Invalid input 🐞
Please fill a token and model_id.
"""
try:
api = HfApi(token=token)
commit_info = convert(api=api, model_id=model_id, task=task)
print("[commit_info]", commit_info)
"""
# save in a private dataset:
if repo is not None:
repo.git_pull(rebase=True)
with open(DATA_FILE, "a") as csvfile:
writer = csv.DictWriter(
csvfile, fieldnames=["model_id", "pr_url", "time"]
)
writer.writerow(
{
"model_id": model_id,
"pr_url": commit_info.pr_url,
"time": str(datetime.now()),
}
)
commit_url = repo.push_to_hub()
print("[dataset]", commit_url)
return f"### Success 🔥 Yay! This model was successfully converted and a PR was open using your token, here: {commit_info.pr_url}]({commit_info.pr_url})"
"""
except Exception as e:
return f"### Error: {e}"
DESCRIPTION = """
The steps are the following:
- Paste a read-access token from hf.co/settings/tokens. Read access is enough given that we will open a PR against the source repo.
- Input a model id from the Hub
- If necessary, input the task for this model.
- Click "Convert to ONNX"
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR!
"""
demo = gr.Interface(
title="Convert any model to Safetensors and open a PR",
description=DESCRIPTION,
allow_flagging="never",
article="Check out the [Optimum repo on GitHub](https://github.com/huggingface/optimum)",
inputs=[
gr.Text(max_lines=1, label="your_hf_token"),
gr.Text(max_lines=1, label="model_id"),
gr.Text(max_lines=1, label="task")
],
outputs=[gr.Markdown(label="output")],
fn=onnx_export,
)
demo.launch()