File size: 11,110 Bytes
451eebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM
import tensorflow as tf
import json
import datetime
import os
import plotly.express as px
import logging
from typing import Dict, List, Optional

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class VRTherapySystem:
    def __init__(self):
        """Initialize the VR Therapy System"""
        try:
            self.data_dir = "vr_therapy_data"
            os.makedirs(self.data_dir, exist_ok=True)
            self.session_data = self._load_or_create_session_data()
            self.user_profiles = self._load_or_create_user_profiles()
            logger.info("VR Therapy System initialized successfully")
        except Exception as e:
            logger.error(f"Error initializing VR Therapy System: {str(e)}")
            raise

    def _load_or_create_session_data(self) -> pd.DataFrame:
        """Load existing session data or create new DataFrame"""
        try:
            file_path = os.path.join(self.data_dir, 'session_data.csv')
            if os.path.exists(file_path):
                return pd.read_csv(file_path)
            else:
                df = pd.DataFrame(columns=[
                    'user_id', 'timestamp', 'session_duration',
                    'pain_reduction', 'mobility_improvement'
                ])
                df.to_csv(file_path, index=False)
                return df
        except Exception as e:
            logger.error(f"Error loading session data: {str(e)}")
            return pd.DataFrame()

    def _load_or_create_user_profiles(self) -> pd.DataFrame:
        """Load existing user profiles or create new DataFrame"""
        try:
            file_path = os.path.join(self.data_dir, 'user_profiles.csv')
            if os.path.exists(file_path):
                return pd.read_csv(file_path)
            else:
                df = pd.DataFrame(columns=[
                    'user_id', 'age', 'condition', 'therapy_goals'
                ])
                df.to_csv(file_path, index=False)
                return df
        except Exception as e:
            logger.error(f"Error loading user profiles: {str(e)}")
            return pd.DataFrame()

    def save_user_profile(self, user_id: str, age: int, condition: str,
                         therapy_goals: str) -> str:
        """Save or update user profile"""
        try:
            new_profile = pd.DataFrame([{
                'user_id': user_id,
                'age': age,
                'condition': condition,
                'therapy_goals': therapy_goals
            }])

            # Update existing or append new
            if user_id in self.user_profiles['user_id'].values:
                self.user_profiles.loc[
                    self.user_profiles['user_id'] == user_id
                ] = new_profile.iloc[0]
            else:
                self.user_profiles = pd.concat(
                    [self.user_profiles, new_profile],
                    ignore_index=True
                )

            # Save to CSV
            self.user_profiles.to_csv(
                os.path.join(self.data_dir, 'user_profiles.csv'),
                index=False
            )
            logger.info(f"Profile saved successfully for user {user_id}")
            return "Profile saved successfully"
        except Exception as e:
            error_msg = f"Error saving user profile: {str(e)}"
            logger.error(error_msg)
            return error_msg

    def generate_therapy_session(self, user_id: str, pain_level: int,
                               mobility_score: int) -> str:
        """Generate a personalized therapy session"""
        try:
            difficulty = self._calculate_difficulty(pain_level, mobility_score)
            session = self._create_session_plan(difficulty)
            logger.info(f"Therapy session generated for user {user_id}")
            return json.dumps(session, indent=2)
        except Exception as e:
            error_msg = f"Error generating therapy session: {str(e)}"
            logger.error(error_msg)
            return json.dumps({"error": error_msg})

    def _calculate_difficulty(self, pain_level: int, mobility_score: int) -> str:
        """Calculate session difficulty"""
        try:
            score = (10 - pain_level) * 0.3 + mobility_score * 0.7
            if score < 4:
                return "basic"
            elif score < 7:
                return "intermediate"
            else:
                return "advanced"
        except Exception as e:
            logger.error(f"Error calculating difficulty: {str(e)}")
            return "basic"

    def _create_session_plan(self, difficulty: str) -> Dict:
        """Create a therapy session plan"""
        exercises = {
            "basic": [
                "Guided Breathing",
                "Gentle Stretching",
                "Simple Range of Motion"
            ],
            "intermediate": [
                "Balance Training",
                "Strength Exercises",
                "Coordination Tasks"
            ],
            "advanced": [
                "Complex Movement Patterns",
                "Endurance Training",
                "Dynamic Balance"
            ]
        }

        return {
            "difficulty": difficulty,
            "exercises": exercises.get(difficulty, exercises["basic"]),
            "duration": 30,
            "rest_periods": "As needed",
            "modifications": "Available upon request"
        }

    def log_session_progress(self, user_id: str, session_duration: int,
                           pain_reduction: int, mobility_improvement: int) -> str:
        """Log therapy session progress"""
        try:
            new_session = pd.DataFrame([{
                'user_id': user_id,
                'timestamp': datetime.datetime.now().isoformat(),
                'session_duration': session_duration,
                'pain_reduction': pain_reduction,
                'mobility_improvement': mobility_improvement
            }])

            self.session_data = pd.concat(
                [self.session_data, new_session],
                ignore_index=True
            )

            # Save to CSV
            self.session_data.to_csv(
                os.path.join(self.data_dir, 'session_data.csv'),
                index=False
            )
            logger.info(f"Session progress logged for user {user_id}")
            return "Session progress logged successfully"
        except Exception as e:
            error_msg = f"Error logging session progress: {str(e)}"
            logger.error(error_msg)
            return error_msg

    def get_user_analytics(self, user_id: str) -> str:
        """Generate user analytics"""
        try:
            user_sessions = self.session_data[
                self.session_data['user_id'] == user_id
            ]

            if len(user_sessions) == 0:
                return json.dumps({"message": "No sessions found for this user"})

            analytics = {
                "total_sessions": len(user_sessions),
                "average_duration": user_sessions['session_duration'].mean(),
                "average_pain_reduction": user_sessions['pain_reduction'].mean(),
                "average_mobility_improvement": user_sessions['mobility_improvement'].mean(),
                "progress_trend": user_sessions['mobility_improvement'].tolist()
            }

            logger.info(f"Analytics generated for user {user_id}")
            return json.dumps(analytics, indent=2)
        except Exception as e:
            error_msg = f"Error generating analytics: {str(e)}"
            logger.error(error_msg)
            return json.dumps({"error": error_msg})

# Create Gradio interface
def create_interface():
    try:
        vr_system = VRTherapySystem()

        with gr.Blocks(title="VR Therapy System") as interface:
            gr.Markdown("# VR Therapy and Rehabilitation System")

            with gr.Tab("User Profile"):
                with gr.Row():
                    user_id = gr.Textbox(label="User ID")
                    age = gr.Number(label="Age")
                    condition = gr.Textbox(label="Medical Condition")
                    therapy_goals = gr.TextArea(label="Therapy Goals")
                save_profile_btn = gr.Button("Save Profile")
                profile_output = gr.Textbox(label="Profile Status")

            with gr.Tab("Therapy Session"):
                with gr.Row():
                    session_user_id = gr.Textbox(label="User ID")
                    pain_level = gr.Slider(1, 10, label="Pain Level")
                    mobility_score = gr.Slider(1, 10, label="Mobility Score")
                generate_btn = gr.Button("Generate Session")
                session_output = gr.JSON(label="Session Plan")

            with gr.Tab("Progress Logging"):
                with gr.Row():
                    log_user_id = gr.Textbox(label="User ID")
                    duration = gr.Number(label="Session Duration (minutes)")
                    pain_reduction = gr.Slider(0, 10, label="Pain Reduction")
                    mobility_improvement = gr.Slider(0, 10, label="Mobility Improvement")
                log_btn = gr.Button("Log Progress")
                log_output = gr.Textbox(label="Logging Status")

            with gr.Tab("Analytics"):
                analytics_user_id = gr.Textbox(label="User ID")
                analytics_btn = gr.Button("Generate Analytics")
                analytics_output = gr.JSON(label="User Analytics")

            # Connect interface functions
            save_profile_btn.click(
                vr_system.save_user_profile,
                inputs=[user_id, age, condition, therapy_goals],
                outputs=profile_output
            )

            generate_btn.click(
                vr_system.generate_therapy_session,
                inputs=[session_user_id, pain_level, mobility_score],
                outputs=session_output
            )

            log_btn.click(
                vr_system.log_session_progress,
                inputs=[log_user_id, duration, pain_reduction, mobility_improvement],
                outputs=log_output
            )

            analytics_btn.click(
                vr_system.get_user_analytics,
                inputs=analytics_user_id,
                outputs=analytics_output
            )

        return interface

    except Exception as e:
        logger.error(f"Error creating interface: {str(e)}")
        raise

# Launch the application
if __name__ == "__main__":
    try:
        interface = create_interface()
        interface.launch(share=True)
        logger.info("VR Therapy System launched successfully")
    except Exception as e:
        logger.error(f"Error launching application: {str(e)}")
        print(f"Error: {str(e)}")