import streamlit as st from PIL import Image import random import time import streamlit_analytics from dotenv import load_dotenv import pickle from huggingface_hub import Repository from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os import pandas as pd import pydeck as pdk from urllib.error import URLError # Initialize session state variables if 'chat_history_page1' not in st.session_state: st.session_state['chat_history_page1'] = [] if 'chat_history_page2' not in st.session_state: st.session_state['chat_history_page2'] = [] # Step 1: Clone the Dataset Repository repo = Repository( local_dir="Private_Book", # Local directory to clone the repository repo_type="dataset", # Specify that this is a dataset repository clone_from="Anne31415/Private_Book", # Replace with your repository URL token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate ) repo.git_pull() # Pull the latest changes (if any) # Step 2: Load the PDF File pdf_path = "Private_Book/141123_Kombi.pdf" # Replace with your PDF file path # Step 2: Load the PDF File pdf_path2 = "Private_Book/Deutsche_Kodierrichtlinien_23.pdf" # Replace with your PDF file path api_key = os.getenv("OPENAI_API_KEY") # Retrieve the API key from st.secrets # Updated caching mechanism using st.cache_data @st.cache_data(persist="disk") # Using persist="disk" to save cache across sessions def load_vector_store(file_path, store_name, force_reload=False): # Check if we need to force reload the vector store (e.g., when the PDF changes) if force_reload or not os.path.exists(f"{store_name}.pkl"): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) text = load_pdf_text(file_path) chunks = text_splitter.split_text(text=text) embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) else: with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) return VectorStore # Utility function to load text from a PDF def load_pdf_text(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() or "" # Add fallback for pages where text extraction fails return text def load_chatbot(): #return load_qa_chain(llm=OpenAI(), chain_type="stuff") return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff") def display_chat_history(chat_history): for chat in chat_history: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" st.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) def handle_no_answer(response): no_answer_phrases = [ "ich weiß es nicht", "ich weiß nicht", "ich bin mir nicht sicher", "es wird nicht erwähnt", "Leider kann ich diese Frage nicht beantworten", "kann ich diese Frage nicht beantworten", "ich kann diese Frage nicht beantworten", "ich kann diese Frage leider nicht beantworten", "keine information", "das ist unklar", "da habe ich keine antwort", "das kann ich nicht beantworten", "i don't know", "i am not sure", "it is not mentioned", "no information", "that is unclear", "i have no answer", "i cannot answer that", "unable to provide an answer", "not enough context", "Sorry, I do not have enough information", "I do not have enough information", ] alternative_responses = [ "Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?", "Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?", "Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?", "Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?", "Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?", # Add more alternative responses as needed ] # Check if response matches any phrase in no_answer_phrases if any(phrase in response.lower() for phrase in no_answer_phrases): return random.choice(alternative_responses) # Randomly select a response return response def page1(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Create columns for layout col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking with col1: st.title("Welcome to BinDocs AI!") with col2: # Load and display the image in the right column, which will be the top-right corner of the page image = Image.open('BinDoc Logo (Quadratisch).png') st.image(image, use_column_width='always') # Start tracking user interactions with streamlit_analytics.track(): if not os.path.exists(pdf_path): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False) display_chat_history(st.session_state['chat_history_page1']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") add_vertical_space(2) # Adjust as per the desired spacing # Create two columns for the buttons col1, col2 = st.columns(2) with col1: if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"): query = "Was kann ich mit dem Prognose-Analyse-Tool machen?" if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"): query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?" if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"): query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?" with col2: if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."): query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat." if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"): query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?" if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"): query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?" if query: st.session_state['chat_history_page1'].append(("User", query, "new")) # Start timing start_time = time.time() with st.spinner('Bot is thinking...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) response = handle_no_answer(response) # Process the response through the new function # Stop timing end_time = time.time() # Calculate duration duration = end_time - start_time # You can use Streamlit's text function to display the timing st.text(f"Response time: {duration:.2f} seconds") st.session_state['chat_history_page1'].append(("Bot", response, "new")) # Display new messages at the bottom new_messages = st.session_state['chat_history_page1'][-2:] for chat in new_messages: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Clear the input field after the query is made query = "" # Mark all messages as old after displaying st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def page2(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Create columns for layout col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking with col1: st.title("Kodieren statt Frustrieren!") with col2: # Load and display the image in the right column, which will be the top-right corner of the page image = Image.open('BinDoc Logo (Quadratisch).png') st.image(image, use_column_width='always') # Start tracking user interactions with streamlit_analytics.track(): if not os.path.exists(pdf_path2): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path2, "vector_store_page2", force_reload=False) display_chat_history(st.session_state['chat_history_page2']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() query = st.text_input("Ask questions about your PDF file (in any preferred language):") add_vertical_space(2) # Adjust as per the desired spacing # Create two columns for the buttons col1, col2 = st.columns(2) with col1: if st.button("Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"): query = "Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?" if st.button("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?"): query = ("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?") if st.button("Hauptdiagnose: Hirntumor wie kodiere ich das?"): query = "Hauptdiagnose: Hirntumor wie kodiere ich das?" with col2: if st.button("Welche Prozeduren werden normalerweise nicht verschlüsselt?"): query = "Welche Prozeduren werden normalerweise nicht verschlüsselt?" if st.button("Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"): query = "Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?" if st.button("Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"): query = "Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?" if query: st.session_state['chat_history_page2'].append(("User", query, "new")) # Start timing start_time = time.time() with st.spinner('Bot is thinking...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) response = handle_no_answer(response) # Process the response through the new function # Stop timing end_time = time.time() # Calculate duration duration = end_time - start_time # You can use Streamlit's text function to display the timing st.text(f"Response time: {duration:.2f} seconds") st.session_state['chat_history_page2'].append(("Bot", response, "new")) # Display new messages at the bottom new_messages = st.session_state['chat_history_page2'][-2:] for chat in new_messages: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Clear the input field after the query is made query = "" # Mark all messages as old after displaying st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def main(): # Sidebar content with st.sidebar: st.title('BinDoc GmbH') st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.") add_vertical_space(1) page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"]) add_vertical_space(1) st.write('Made with ❤️ by BinDoc GmbH') # Main area content based on page selection if page == "Document Analysis Bot": page1() elif page == "Coding Assistance Bot": page2() if __name__ == "__main__": main()