import streamlit as st from PIL import Image import random import time from dotenv import load_dotenv import pickle from huggingface_hub import Repository from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os import uuid import json import pandas as pd import pydeck as pdk from urllib.error import URLError # Initialize session state variables if 'chat_history_page1' not in st.session_state: st.session_state['chat_history_page1'] = [] if 'chat_history_page2' not in st.session_state: st.session_state['chat_history_page2'] = [] if 'chat_history_page3' not in st.session_state: st.session_state['chat_history_page3'] = [] # This session ID will be unique per user session and consistent across all pages. if 'session_id' not in st.session_state: st.session_state['session_id'] = str(uuid.uuid4()) # Step 1: Clone the Dataset Repository repo = Repository( local_dir="Private_Book", # Local directory to clone the repository repo_type="dataset", # Specify that this is a dataset repository clone_from="Anne31415/Private_Book", # Replace with your repository URL token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate ) repo.git_pull() # Pull the latest changes (if any) # Step 1: Clone the ChatSet Repository - save all the chats anonymously repo2 = Repository( local_dir="Chat_Store", # Local directory to clone the repository repo_type="dataset", # Specify that this is a dataset repository clone_from="Anne31415/Chat_Store", # Replace with your repository URL token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate ) repo.git_pull() # Pull the latest changes (if any) # Step 2: Load the PDF File pdf_path = "Private_Book/KH_Reform230124.pdf" # Replace with your PDF file path pdf_path2 = "Private_Book/Buch_23012024.pdf" pdf_path3 = "Private_Book/Kosten_Strukturdaten_RAG_vorbereited.pdf" api_key = os.getenv("OPENAI_API_KEY") # Retrieve the API key from st.secrets @st.cache_resource def load_vector_store(file_path, store_name, force_reload=False): local_repo_path = "Private_Book" vector_store_path = os.path.join(local_repo_path, f"{store_name}.pkl") # Check if vector store already exists and force_reload is False if not force_reload and os.path.exists(vector_store_path): with open(vector_store_path, "rb") as f: VectorStore = pickle.load(f) #st.text(f"Loaded existing vector store from {vector_store_path}") else: # Load and process the PDF, then create the vector store text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100, length_function=len) text = load_pdf_text(file_path) chunks = text_splitter.split_text(text=text) embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) # Serialize the vector store with open(vector_store_path, "wb") as f: pickle.dump(VectorStore, f) #st.text(f"Created and saved vector store at {vector_store_path}") # Change working directory for Git operations original_dir = os.getcwd() os.chdir(local_repo_path) try: # Check current working directory and list files for debugging #st.text(f"Current working directory: {os.getcwd()}") #st.text(f"Files in current directory: {os.listdir()}") # Adjusted file path for Git command repo.git_add(f"{store_name}.pkl") # Use just the file name repo.git_commit(f"Update vector store: {store_name}") repo.git_push() except Exception as e: st.error(f"Error during Git operations: {e}") finally: # Change back to the original directory os.chdir(original_dir) return VectorStore # Utility function to load text from a PDF def load_pdf_text(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() or "" # Add fallback for pages where text extraction fails return text def load_chatbot(): #return load_qa_chain(llm=OpenAI(), chain_type="stuff") return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff") def display_chat_history(chat_history): for chat in chat_history: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" st.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) def handle_no_answer(response): no_answer_phrases = [ "ich weiß es nicht", "ich weiß nicht", "ich bin mir nicht sicher", "es wird nicht erwähnt", "Leider kann ich diese Frage nicht beantworten", "kann ich diese Frage nicht beantworten", "ich kann diese Frage nicht beantworten", "ich kann diese Frage leider nicht beantworten", "keine information", "das ist unklar", "da habe ich keine antwort", "das kann ich nicht beantworten", "i don't know", "i am not sure", "it is not mentioned", "no information", "that is unclear", "i have no answer", "i cannot answer that", "unable to provide an answer", "not enough context", "Sorry, I do not have enough information", "I do not have enough information", "I don't have enough information", "Sorry, I don't have enough context to answer that question.", "I don't have enough context to answer that question.", "to answer that question.", "Sorry", "I'm sorry", "I don't understand the question", "I don't understand" ] alternative_responses = [ "Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?", "Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?", "Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?", "Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?", "Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?", # Add more alternative responses as needed ] # Check if response matches any phrase in no_answer_phrases if any(phrase in response.lower() for phrase in no_answer_phrases): return random.choice(alternative_responses) # Randomly select a response return response def ask_bot(query): # Definiere den standardmäßigen Prompt standard_prompt = "Antworte immer in der Sprache in der der User schreibt. Formuliere immer ganze freundliche ganze Sätze und biete wenn möglich auch mehr Informationen (aber nicht mehr als 1 Satz mehr). Wenn der User sehr vage schreibt frage nach. Wenn du zu einer bestimmten Frage Daten aus mehreren Jahren hast, nenne das aktuellste und ein weiters. " # Kombiniere den standardmäßigen Prompt mit der Benutzeranfrage full_query = standard_prompt + query return full_query def save_conversation(chat_histories, session_id): base_path = "Chat_Store/conversation_logs" if not os.path.exists(base_path): os.makedirs(base_path) filename = f"{base_path}/{session_id}.json" # Check if the log file already exists existing_data = {"page1": [], "page2": [], "page3": []} if os.path.exists(filename): with open(filename, 'r', encoding='utf-8') as file: existing_data = json.load(file) # Append the new chat history to the existing data for each page for page_number, chat_history in enumerate(chat_histories, start=1): existing_data[f"page{page_number}"] += chat_history with open(filename, 'w', encoding='utf-8') as file: json.dump(existing_data, file, indent=4, ensure_ascii=False) # Git operations try: # Change directory to Chat_Store for Git operations original_dir = os.getcwd() os.chdir('Chat_Store') # Correct file path relative to the Git repository's root git_file_path = f"conversation_logs/{session_id}.json" repo2.git_add(git_file_path) repo2.git_commit(f"Add/update conversation log for session {session_id}") repo2.git_push() # Change back to the original directory os.chdir(original_dir) except Exception as e: st.error(f"Error during Git operations: {e}") def display_session_id(): session_id = st.session_state['session_id'] st.sidebar.markdown(f"**Ihre Session ID:** `{session_id}`") st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.") def page1(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Create columns for layout col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking with col1: st.title("Alles zur aktuellen Krankenhausreform!") with col2: # Attempt to load the image with enhanced error handling try: # Construct the absolute path to the image file current_dir = os.getcwd() # Get the current working directory image_path = os.path.join(current_dir, 'BinDoc Logo (Quadratisch).png') # Load and display the image image = Image.open(image_path) st.image(image, use_column_width='always') except FileNotFoundError: st.error(f"File not found. Please check the file path. Attempted path: {image_path}") except Exception as e: st.error(f"An unexpected error occurred while loading the image: {e}") if not os.path.exists(pdf_path): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path, "KH_Reform_2301", force_reload=False) display_chat_history(st.session_state['chat_history_page1']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") add_vertical_space(2) # Adjust as per the desired spacing # Create two columns for the buttons col1, col2 = st.columns(2) with col1: if st.button("Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"): query = "Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?" if st.button("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?"): query = ("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?") if st.button("Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"): query = "Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?" with col2: if st.button("Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?"): query = "Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?" if st.button("Was soll die Reform der Notfallversorgung beinhalten?"): query = "Was soll die Reform der Notfallversorgung beinhalten?" if st.button("Was bedeutet die Vorhaltefinanzierung?"): query = "Was bedeutet die Vorhaltefinanzierung?" if query: full_query = ask_bot(query) st.session_state['chat_history_page1'].append(("User", query, "new")) # Start timing start_time = time.time() # Create a placeholder for the response time response_time_placeholder = st.empty() # Include the spinner around all processing and display operations with st.spinner('Eve denkt über Ihre Frage nach...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=5) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=full_query) response = handle_no_answer(response) # Stop timing end_time = time.time() # Calculate duration duration = end_time - start_time st.session_state['chat_history_page1'].append(("Eve", response, "new")) # Combine chat histories from all pages all_chat_histories = [ st.session_state['chat_history_page1'], st.session_state['chat_history_page2'], st.session_state['chat_history_page3'] ] # Save the combined chat histories save_conversation(all_chat_histories, st.session_state['session_id']) # Display new messages at the bottom new_messages = st.session_state['chat_history_page1'][-2:] for chat in new_messages: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Update the response time placeholder after the messages are displayed response_time_placeholder.text(f"Response time: {duration:.2f} seconds") # Clear the input field after the query is made query = "" # Mark all messages as old after displaying st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def page2(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Create columns for layout col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking with col1: st.title("Die wichtigsten 100 Kennzahlen und KPIs!") with col2: # Load and display the image in the right column, which will be the top-right corner of the page image = Image.open('BinDoc Logo (Quadratisch).png') st.image(image, use_column_width='always') if not os.path.exists(pdf_path2): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path2, "Buch_2301", force_reload=False) display_chat_history(st.session_state['chat_history_page2']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") add_vertical_space(2) # Adjust as per the desired spacing # Create two columns for the buttons col1, col2 = st.columns(2) with col1: if st.button("Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus."): query = "Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus." if st.button("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?"): query = ("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?") if st.button("Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden?"): query = "Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden? " with col2: if st.button("Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?"): query = "Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?" if st.button("Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung."): query = "Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung." if st.button("Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?"): query = "Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?" if query: full_query = ask_bot(query) st.session_state['chat_history_page2'].append(("User", query, "new")) # Start timing start_time = time.time() # Create a placeholder for the response time response_time_placeholder = st.empty() with st.spinner('Eve denkt über Ihre Frage nach...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=5) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=full_query) response = handle_no_answer(response) # Process the response through the new function # Stop timing end_time = time.time() # Calculate duration duration = end_time - start_time st.session_state['chat_history_page2'].append(("Eve", response, "new")) # Combine chat histories from all pages all_chat_histories = [ st.session_state['chat_history_page1'], st.session_state['chat_history_page2'], st.session_state['chat_history_page3'] ] # Save the combined chat histories save_conversation(all_chat_histories, st.session_state['session_id']) # Display new messages at the bottom new_messages = st.session_state['chat_history_page2'][-2:] for chat in new_messages: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Update the response time placeholder after the messages are displayed response_time_placeholder.text(f"Response time: {duration:.2f} seconds") # Clear the input field after the query is made query = "" # Mark all messages as old after displaying st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def page3(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Create columns for layout col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking with col1: st.title("Kosten- und Strukturdaten der Krankenhäuser") with col2: # Load and display the image in the right column, which will be the top-right corner of the page image = Image.open('BinDoc Logo (Quadratisch).png') st.image(image, use_column_width='always') if not os.path.exists(pdf_path2): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path3, "Kosten_Str_2301", force_reload=True) display_chat_history(st.session_state['chat_history_page3']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") add_vertical_space(2) # Adjust as per the desired spacing # Create two columns for the buttons col1, col2 = st.columns(2) with col1: if st.button("Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"): query = "Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?" if st.button("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?"): query = ("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?") if st.button("Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern?"): query = "Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern? " with col2: if st.button("Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"): query = "Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?" if st.button("Welche Sachkosten werden in Krankenhäusern unterschieden?"): query = "Welche Sachkosten werden in Krankenhäusern unterschieden? " if st.button("Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?"): query = "Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?" if query: full_query = ask_bot(query) st.session_state['chat_history_page3'].append(("User", query, "new")) # Start timing start_time = time.time() # Create a placeholder for the response time response_time_placeholder = st.empty() with st.spinner('Eve denkt über Ihre Frage nach...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=5) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=full_query) response = handle_no_answer(response) # Process the response through the new function # Stop timing end_time = time.time() # Calculate duration duration = end_time - start_time st.session_state['chat_history_page3'].append(("Eve", response, "new")) # Combine chat histories from all pages all_chat_histories = [ st.session_state['chat_history_page1'], st.session_state['chat_history_page2'], st.session_state['chat_history_page3'] ] # Save the combined chat histories save_conversation(all_chat_histories, st.session_state['session_id']) # Display new messages at the bottom new_messages = st.session_state['chat_history_page3'][-2:] for chat in new_messages: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Update the response time placeholder after the messages are displayed response_time_placeholder.text(f"Response time: {duration:.2f} seconds") # Clear the input field after the query is made query = "" # Mark all messages as old after displaying st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def page4(): try: st.header(":mailbox: Kontakt & Feedback!") st.markdown("Ihre Session-ID finden Sie auf der linken Seite!") contact_form = """
""" st.markdown(contact_form, unsafe_allow_html=True) # Use Local CSS File def local_css(file_name): with open(file_name) as f: st.markdown(f"", unsafe_allow_html=True) local_css("style.css") except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") # Optionally log the exception details to a file or error tracking service def display_session_id(): session_id = st.session_state['session_id'] st.sidebar.markdown(f"**Your Session ID:** `{session_id}`") st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.") # Main function def main(): # Sidebar content with st.sidebar: st.title('BinDoc GmbH') st.markdown("Tauchen Sie ein in eine revolutionäre Erfahrung mit BinDocs Chat-App - angetrieben von fortschrittlichster KI-Technologie.") add_vertical_space(1) page = st.sidebar.selectbox("Wählen Sie eine Seite aus:", ["Krankenhausreform!", "Kennzahlen und KPIs!", "Kosten- und Strukturdaten", "Kontakt & Feedback!"]) add_vertical_space(4) display_session_id() # Display the session ID in the sidebar st.write('Made with ❤️ by BinDoc GmbH') # Main area content based on page selection if page == "Krankenhausreform!": page1() elif page == "Kennzahlen und KPIs!": page2() elif page == "Kosten- und Strukturdaten": page3() elif page == "Kontakt & Feedback!": page4() if __name__ == "__main__": main()