File size: 28,579 Bytes
12d891e
8f2ad06
c8ff64a
5a28160
f6250a9
 
 
 
 
 
 
 
 
 
 
ae1d88c
197dc26
 
 
73d7e50
108ee46
 
 
 
ae8729e
b160f83
 
 
 
 
 
38ca6b6
 
 
197dc26
 
 
 
b160f83
5a94d35
f6250a9
 
 
 
 
 
 
 
73d7e50
197dc26
 
 
 
 
 
 
 
 
 
 
f6250a9
c37ad53
f6250a9
38ca6b6
3591534
37c001c
3591534
884e5c5
 
f6250a9
ae8729e
 
6143d48
d1a1a0f
835e20f
 
 
 
 
 
 
3ad7e67
835e20f
 
e896ece
835e20f
 
bb380bc
835e20f
 
 
 
 
38ca6b6
835e20f
 
 
 
 
 
 
38ca6b6
 
835e20f
 
 
 
 
 
 
 
 
 
 
 
b160f83
d3a0859
ae8729e
 
 
 
 
 
 
 
 
1b81bef
d1a1a0f
1b81bef
ae8729e
 
 
 
 
d3a0859
f6250a9
c8ff64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bcdc6
 
cff6b5e
 
 
 
7a72298
 
 
 
cff6b5e
c8ff64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ae7263
 
0420538
5ae7263
 
 
197dc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ae7263
197dc26
 
 
 
 
 
 
 
 
 
 
 
6143d48
 
197dc26
f6250a9
884e5c5
b06fd67
 
 
 
 
 
 
 
 
e752667
49d6825
7350525
 
6143d48
7350525
 
e752667
 
 
 
 
 
 
 
 
 
 
 
 
ae8729e
197dc26
 
 
 
d1a1a0f
197dc26
e752667
197dc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0420538
 
197dc26
 
 
 
 
0420538
 
197dc26
 
 
 
 
b160f83
b06fd67
197dc26
 
 
6143d48
197dc26
 
6143d48
 
 
 
 
 
197dc26
e68277d
197dc26
 
6143d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197dc26
6143d48
197dc26
 
 
f6250a9
b06fd67
 
 
f6250a9
884e5c5
f6250a9
884e5c5
48235eb
5ea80a9
 
 
 
 
 
 
 
 
 
 
 
6143d48
5ea80a9
 
 
 
 
 
 
197dc26
 
 
 
d1a1a0f
197dc26
 
 
 
 
 
 
 
 
 
 
6143d48
197dc26
 
 
 
 
 
 
0420538
 
 
 
 
 
197dc26
 
 
0420538
 
 
 
 
 
b160f83
5ea80a9
 
197dc26
 
 
 
 
 
6143d48
 
 
5ea80a9
6143d48
197dc26
e68277d
197dc26
 
 
 
5ea80a9
197dc26
 
 
5ea80a9
197dc26
 
0420538
6143d48
5ae7263
0420538
197dc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6143d48
 
 
 
197dc26
 
 
 
 
5ea80a9
 
 
 
 
 
 
38ca6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197dc26
 
 
 
37c001c
197dc26
 
 
 
 
 
 
 
 
 
 
6143d48
197dc26
 
 
 
 
 
 
 
 
0420538
 
 
 
197dc26
 
 
 
 
 
 
0420538
 
38ca6b6
 
 
197dc26
 
 
 
 
 
38ca6b6
6143d48
 
 
 
197dc26
e68277d
197dc26
 
 
 
 
 
 
 
38ca6b6
197dc26
 
 
6143d48
197dc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6143d48
 
 
38ca6b6
 
197dc26
 
5ae7263
197dc26
 
38ca6b6
 
 
 
 
197dc26
 
6143d48
197dc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea80a9
197dc26
 
 
6143d48
884e5c5
197dc26
884e5c5
1b661bd
884e5c5
 
6143d48
1b661bd
6143d48
197dc26
 
884e5c5
b06fd67
197dc26
1b661bd
6143d48
1b661bd
6143d48
1b661bd
6143d48
38ca6b6
6143d48
197dc26
1b661bd
48c275c
f6250a9
6143d48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import streamlit as st
from PIL import Image
import random
import time
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
import uuid
import json


import pandas as pd
import pydeck as pdk
from urllib.error import URLError

# Initialize session state variables
if 'chat_history_page1' not in st.session_state:
    st.session_state['chat_history_page1'] = []

if 'chat_history_page2' not in st.session_state:
    st.session_state['chat_history_page2'] = []

if 'chat_history_page3' not in st.session_state:
    st.session_state['chat_history_page3'] = []

# This session ID will be unique per user session and consistent across all pages.
if 'session_id' not in st.session_state:
    st.session_state['session_id'] = str(uuid.uuid4())



# Step 1: Clone the Dataset Repository
repo = Repository(
    local_dir="Private_Book",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    clone_from="Anne31415/Private_Book",  # Replace with your repository URL
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)


# Step 1: Clone the ChatSet Repository - save all the chats anonymously
repo2 = Repository(
    local_dir="Chat_Store",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    clone_from="Anne31415/Chat_Store",  # Replace with your repository URL
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)


# Step 2: Load the PDF File
pdf_path = "Private_Book/KH_Reform230124.pdf"  # Replace with your PDF file path

pdf_path2 = "Private_Book/Buch_23012024.pdf"  

pdf_path3 = "Private_Book/Kosten_Strukturdaten_RAG_vorbereited.pdf"  

api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets



@st.cache_resource
def load_vector_store(file_path, store_name, force_reload=False):
    local_repo_path = "Private_Book"
    vector_store_path = os.path.join(local_repo_path, f"{store_name}.pkl")

    # Check if vector store already exists and force_reload is False
    if not force_reload and os.path.exists(vector_store_path):
        with open(vector_store_path, "rb") as f:
            VectorStore = pickle.load(f)
        #st.text(f"Loaded existing vector store from {vector_store_path}")
    else:
        # Load and process the PDF, then create the vector store
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100, length_function=len)
        text = load_pdf_text(file_path)
        chunks = text_splitter.split_text(text=text)
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)

        # Serialize the vector store
        with open(vector_store_path, "wb") as f:
            pickle.dump(VectorStore, f)
        #st.text(f"Created and saved vector store at {vector_store_path}")

        # Change working directory for Git operations
        original_dir = os.getcwd()
        os.chdir(local_repo_path)
        
        try:
            # Check current working directory and list files for debugging
            #st.text(f"Current working directory: {os.getcwd()}")
            #st.text(f"Files in current directory: {os.listdir()}")
        
            # Adjusted file path for Git command
            repo.git_add(f"{store_name}.pkl")  # Use just the file name
            repo.git_commit(f"Update vector store: {store_name}")
            repo.git_push()
        except Exception as e:
            st.error(f"Error during Git operations: {e}")
        finally:
            # Change back to the original directory
            os.chdir(original_dir)

    return VectorStore


# Utility function to load text from a PDF
def load_pdf_text(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text() or ""  # Add fallback for pages where text extraction fails
    return text

def load_chatbot():
    #return load_qa_chain(llm=OpenAI(), chain_type="stuff")
    return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff")


def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)


def handle_no_answer(response):
    no_answer_phrases = [
        "ich weiß es nicht",
        "ich weiß nicht",
        "ich bin mir nicht sicher",
        "es wird nicht erwähnt",
        "Leider kann ich diese Frage nicht beantworten",
        "kann ich diese Frage nicht beantworten",
        "ich kann diese Frage nicht beantworten",
        "ich kann diese Frage leider nicht beantworten",
        "keine information",
        "das ist unklar",
        "da habe ich keine antwort",
        "das kann ich nicht beantworten",
        "i don't know",
        "i am not sure",
        "it is not mentioned",
        "no information",
        "that is unclear",
        "i have no answer",
        "i cannot answer that",
        "unable to provide an answer",
        "not enough context",
        "Sorry, I do not have enough information",
        "I do not have enough information",
        "I don't have enough information",
        "Sorry, I don't have enough context to answer that question.",
        "I don't have enough context to answer that question.",
        "to answer that question.",
        "Sorry",
        "I'm sorry",
        "I don't understand the question",
        "I don't understand"

    ]

    alternative_responses = [
        "Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?",
        "Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?",
        "Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?",
        "Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?",
        "Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?",
        # Add more alternative responses as needed
    ]

    # Check if response matches any phrase in no_answer_phrases
    if any(phrase in response.lower() for phrase in no_answer_phrases):
        return random.choice(alternative_responses)  # Randomly select a response
    return response

def ask_bot(query):
    # Definiere den standardmäßigen Prompt
    standard_prompt = "Antworte immer in der Sprache in der der User schreibt. Formuliere immer ganze freundliche ganze Sätze und biete wenn möglich auch mehr Informationen (aber nicht mehr als 1 Satz mehr). Wenn der User sehr vage schreibt frage nach. Wenn du zu einer bestimmten Frage Daten aus mehreren Jahren hast, nenne das aktuellste und ein weiters. "
    # Kombiniere den standardmäßigen Prompt mit der Benutzeranfrage
    full_query = standard_prompt + query
    return full_query

def save_conversation(chat_histories, session_id):
    base_path = "Chat_Store/conversation_logs"
    if not os.path.exists(base_path):
        os.makedirs(base_path)

    filename = f"{base_path}/{session_id}.json"

    # Check if the log file already exists
    existing_data = {"page1": [], "page2": [], "page3": []}
    if os.path.exists(filename):
        with open(filename, 'r', encoding='utf-8') as file:
            existing_data = json.load(file)

    # Append the new chat history to the existing data for each page
    for page_number, chat_history in enumerate(chat_histories, start=1):
        existing_data[f"page{page_number}"] += chat_history

    with open(filename, 'w', encoding='utf-8') as file:
        json.dump(existing_data, file, indent=4, ensure_ascii=False)

    # Git operations
    try:
        # Change directory to Chat_Store for Git operations
        original_dir = os.getcwd()
        os.chdir('Chat_Store')
    
        # Correct file path relative to the Git repository's root
        git_file_path = f"conversation_logs/{session_id}.json"
    
        repo2.git_add(git_file_path)
        repo2.git_commit(f"Add/update conversation log for session {session_id}")
        repo2.git_push()
    
        # Change back to the original directory
        os.chdir(original_dir)
    except Exception as e:
        st.error(f"Error during Git operations: {e}")

        
def display_session_id():
    session_id = st.session_state['session_id']
    st.sidebar.markdown(f"**Ihre Session ID:** `{session_id}`")
    st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.")


def page1():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
        # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("Alles zur aktuellen Krankenhausreform!")

        with col2:
            # Attempt to load the image with enhanced error handling
            try:
                # Construct the absolute path to the image file
                current_dir = os.getcwd()  # Get the current working directory
                image_path = os.path.join(current_dir, 'BinDoc Logo (Quadratisch).png')
                
                # Load and display the image
                image = Image.open(image_path)
                st.image(image, use_column_width='always')
            except FileNotFoundError:
                st.error(f"File not found. Please check the file path. Attempted path: {image_path}")
            except Exception as e:
                st.error(f"An unexpected error occurred while loading the image: {e}")
 
        if not os.path.exists(pdf_path):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path, "KH_Reform_2301", force_reload=False)


        display_chat_history(st.session_state['chat_history_page1'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"):
                query = "Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"
            if st.button("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?"):
                query = ("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?")
            if st.button("Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"):
                query = "Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"

        
        with col2:
            if st.button("Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?"):
                query = "Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?"
            if st.button("Was soll die Reform der Notfallversorgung beinhalten?"):
                query = "Was soll die Reform der Notfallversorgung beinhalten?"
            if st.button("Was bedeutet die Vorhaltefinanzierung?"):
                query = "Was bedeutet die Vorhaltefinanzierung?"


    
        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page1'].append(("User", query, "new"))
        
            # Start timing
            start_time = time.time()
        
            # Create a placeholder for the response time
            response_time_placeholder = st.empty()
        
            # Include the spinner around all processing and display operations
            with st.spinner('Eve denkt über Ihre Frage nach...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)
        
                # Stop timing
                end_time = time.time()
        
                # Calculate duration
                duration = end_time - start_time
        
                st.session_state['chat_history_page1'].append(("Eve", response, "new"))
        
                # Combine chat histories from all pages
                all_chat_histories = [
                    st.session_state['chat_history_page1'],
                    st.session_state['chat_history_page2'],
                    st.session_state['chat_history_page3']
                ]
        
                # Save the combined chat histories
                save_conversation(all_chat_histories, st.session_state['session_id'])
        
                # Display new messages at the bottom
                new_messages = st.session_state['chat_history_page1'][-2:]
                for chat in new_messages:
                    background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                    new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
        
                # Update the response time placeholder after the messages are displayed
                response_time_placeholder.text(f"Response time: {duration:.2f} seconds")
        
            # Clear the input field after the query is made
            query = ""       

        # Mark all messages as old after displaying
        st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service



def page2():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
         # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("Die wichtigsten 100 Kennzahlen und KPIs!")

        with col2:
            # Load and display the image in the right column, which will be the top-right corner of the page
            image = Image.open('BinDoc Logo (Quadratisch).png')
            st.image(image, use_column_width='always')

            
        if not os.path.exists(pdf_path2):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path2, "Buch_2301", force_reload=False)



        display_chat_history(st.session_state['chat_history_page2'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus."):
                query = "Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus."
            if st.button("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?"):
                query = ("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?")
            if st.button("Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden?"):
                query = "Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden? "

        
        with col2:
            if st.button("Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?"):
                query = "Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?"
            if st.button("Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung."):
                query = "Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung."
            if st.button("Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?"):
                query = "Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?"

    

        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page2'].append(("User", query, "new"))

            # Start timing
            start_time = time.time()

            # Create a placeholder for the response time
            response_time_placeholder = st.empty()
            
            with st.spinner('Eve denkt über Ihre Frage nach...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)  # Process the response through the new function


                    
            # Stop timing
            end_time = time.time()
            
            # Calculate duration
            duration = end_time - start_time
            
            st.session_state['chat_history_page2'].append(("Eve", response, "new"))


            # Combine chat histories from all pages
            all_chat_histories = [
                st.session_state['chat_history_page1'],
                st.session_state['chat_history_page2'],
                st.session_state['chat_history_page3']
            ]

            # Save the combined chat histories
            save_conversation(all_chat_histories, st.session_state['session_id'])

            # Display new messages at the bottom
            new_messages = st.session_state['chat_history_page2'][-2:]
            for chat in new_messages:
                background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
    
                # Update the response time placeholder after the messages are displayed
                response_time_placeholder.text(f"Response time: {duration:.2f} seconds")
                
            # Clear the input field after the query is made
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service



def page3():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
         # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("Kosten- und Strukturdaten der Krankenhäuser")

        with col2:
            # Load and display the image in the right column, which will be the top-right corner of the page
            image = Image.open('BinDoc Logo (Quadratisch).png')
            st.image(image, use_column_width='always')

            
        if not os.path.exists(pdf_path2):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path3, "Kosten_Str_2301", force_reload=True)



        display_chat_history(st.session_state['chat_history_page3'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"):
                query = "Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"
            if st.button("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?"):
                query = ("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?")
            if st.button("Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern?"):
                query = "Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern? "

        
        with col2:
            if st.button("Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"):
                query = "Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"
            if st.button("Welche Sachkosten werden in Krankenhäusern unterschieden?"):
                query = "Welche Sachkosten werden in Krankenhäusern unterschieden? "
            if st.button("Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?"):
                query = "Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?"

    

        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page3'].append(("User", query, "new"))

            # Start timing
            start_time = time.time()
            
            # Create a placeholder for the response time
            response_time_placeholder = st.empty()
            
            with st.spinner('Eve denkt über Ihre Frage nach...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)  # Process the response through the new function


                    
            # Stop timing
            end_time = time.time()
            
            # Calculate duration
            duration = end_time - start_time

            st.session_state['chat_history_page3'].append(("Eve", response, "new"))

            # Combine chat histories from all pages
            all_chat_histories = [
                st.session_state['chat_history_page1'],
                st.session_state['chat_history_page2'],
                st.session_state['chat_history_page3']
            ]

            # Save the combined chat histories
            save_conversation(all_chat_histories, st.session_state['session_id'])


            # Display new messages at the bottom
            new_messages = st.session_state['chat_history_page3'][-2:]
            for chat in new_messages:
                background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
        
            # Update the response time placeholder after the messages are displayed
            response_time_placeholder.text(f"Response time: {duration:.2f} seconds")


            # Clear the input field after the query is made
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service

def page4():
    try: 
        st.header(":mailbox: Kontakt & Feedback!")
        st.markdown("Ihre Session-ID finden Sie auf der linken Seite!")

        contact_form = """
        <form action="https://formsubmit.co/[email protected]" method="POST">
             <input type="hidden" name="_captcha" value="false">
             <input type="text" name="Session-ID" placeholder="Your Session-ID goes here" required>
             <input type="email" name="email" placeholder="Your email" required>
             <textarea name="message" placeholder="Your message here"></textarea>
             <form action="https://formsubmit.co/your-random-string" method="POST" />
             <button type="submit">Send</button>
        </form>
        """
        
        st.markdown(contact_form, unsafe_allow_html=True)
        
        # Use Local CSS File
        def local_css(file_name):
            with open(file_name) as f:
                st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
        
        
        local_css("style.css")
        
    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service


def display_session_id():
    session_id = st.session_state['session_id']
    st.sidebar.markdown(f"**Your Session ID:** `{session_id}`")
    st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.")

# Main function
def main():
    # Sidebar content
    with st.sidebar:
        st.title('BinDoc GmbH')
        st.markdown("Tauchen Sie ein in eine revolutionäre Erfahrung mit BinDocs Chat-App - angetrieben von fortschrittlichster KI-Technologie.")
        add_vertical_space(1)
        page = st.sidebar.selectbox("Wählen Sie eine Seite aus:", ["Krankenhausreform!", "Kennzahlen und KPIs!", "Kosten- und Strukturdaten", "Kontakt & Feedback!"])
        add_vertical_space(4)
        display_session_id()  # Display the session ID in the sidebar
        st.write('Made with ❤️ by BinDoc GmbH')

        
    # Main area content based on page selection
    if page == "Krankenhausreform!":
        page1()
    elif page == "Kennzahlen und KPIs!":
        page2()
    elif page == "Kosten- und Strukturdaten":
        page3()
    elif page == "Kontakt & Feedback!":
        page4()


if __name__ == "__main__":
    main()