import gradio as gr from dotenv import load_dotenv from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub from langchain_core.prompts import PromptTemplate from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from sentence_transformers import SentenceTransformer, util from sklearn.cluster import KMeans import nltk import pandas as pd import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders import os nltk.download('punkt') from nltk.tokenize import word_tokenize from nltk import tokenize import numpy as np import scipy.spatial import csv load_dotenv() def generate_prompts(user_input): prompt_template = PromptTemplate( input_variables=["Question"], template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts." ) config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64} llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", config=config) hub_chain = LLMChain(prompt = prompt_template, llm = llm) input_data = {"Question": user_input} generated_prompts = hub_chain.run(input_data) questions_list = generated_prompts.split('\n') formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip()) questions_list = formatted_questions.split("Question:")[1:] return questions_list def answer_question(prompt): prompt_template = PromptTemplate( input_variables=["Question"], template=f"give one answer for {prompt} and do not consider the number behind it." ) config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64} llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", config=config) hub_chain = LLMChain(prompt = prompt_template, llm = llm) input_data = {"Question": prompt} generated_answer = hub_chain.run(input_data) return generated_answer def calculate_similarity(word, other_words, model, threshold=0.5): embeddings_word = model.encode([word]) embeddings_other_words = model.encode(other_words) for i, embedding in enumerate(embeddings_other_words): similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding) if similarity > threshold and similarity < 0.85: return i, similarity return None, None def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.75): model = SentenceTransformer('all-MiniLM-L6-v2') # Split each paragraph into sentences all_sentences = [tokenize.sent_tokenize(paragraph) for paragraph in paragraphs] # Initialize storage for highlighted sentences highlighted_sentences = [['' for sentence in para] for para in all_sentences] colors = ['yellow', 'lightgreen', 'lightblue', 'pink', 'lavender', 'salmon', 'peachpuff', 'powderblue', 'khaki', 'wheat'] # Track which sentences belong to which paragraph sentence_to_paragraph_index = [idx for idx, para in enumerate(all_sentences) for sentence in para] # Encode all sentences into vectors flattened_sentences = [sentence for para in all_sentences for sentence in para] sentence_embeddings = model.encode(flattened_sentences) # Calculate cosine similarities between all pairs of sentences cosine_similarities = util.pytorch_cos_sim(sentence_embeddings, sentence_embeddings) # Iterate through each sentence pair and highlight if they are similar but from different paragraphs color_index = 0 for i, embedding_i in enumerate(sentence_embeddings): for j, embedding_j in enumerate(sentence_embeddings): if i != j and cosine_similarities[i, j] > similarity_threshold and sentence_to_paragraph_index[i] != sentence_to_paragraph_index[j]: color = colors[color_index % len(colors)] if highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] == '': highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] = (""+ flattened_sentences[i]+"") if highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] == '': highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] = (""+ flattened_sentences[j]+"") color_index += 1 # Move to the next color # Combine sentences back into paragraphs highlighted_paragraphs = [' '.join(para) for para in highlighted_sentences] # Combine all paragraphs into one HTML string html_output = '
"+ cbg[idx] +"
"+ sentence +"
First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively.
In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.
To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.
Upon completion, please provide your email address. We will compile and send the answers to you promptly.