Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from dotenv import load_dotenv | |
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub | |
from langchain_core.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from sentence_transformers import SentenceTransformer, util | |
from sklearn.cluster import KMeans | |
import nltk | |
import pandas as pd | |
import smtplib | |
import os | |
nltk.download('punkt') | |
from nltk.tokenize import word_tokenize | |
from nltk import tokenize | |
import numpy as np | |
import scipy.spatial | |
import csv | |
load_dotenv() | |
# Global array of different possible LLM selection options | |
LLM_OPTIONS = [ | |
("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"), | |
("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"), | |
("Zephyr-7B", "zephyr-quiklang-3b-4k.Q4_K_M.gguf"), | |
("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"), | |
("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"), | |
("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF") | |
] | |
def generate_prompts(user_input): | |
print("User input here") | |
print(user_input) | |
prompt_template = PromptTemplate( | |
input_variables=["Question"], | |
template=f"Just list 5 distinct and separate yet relevant question prompts for {user_input} and don't put number before any of the prompts." | |
) | |
config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256} | |
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", | |
config=config) | |
hub_chain = LLMChain(prompt=prompt_template, llm=llm) | |
input_data = {"Question": user_input} | |
generated_prompts = hub_chain.run(input_data) | |
questions_list = generated_prompts.split('\n') | |
formatted_questions = "\n".join(f"Question: {question}" for question in questions_list if question.strip()) | |
questions_list = formatted_questions.split("Question:")[1:] | |
return questions_list | |
def answer_question(prompt, model_name): | |
print("inside answer question function") | |
print("prompt") | |
print(prompt) | |
print("") | |
print("model name") | |
print(model_name) | |
print("") | |
prompt_template = PromptTemplate( | |
input_variables=["Question"], | |
template=f"Please provide a concise and relevant answer for {prompt} in three sentences or less and don't put Answer in front of what you return. You are a helpful and factual assistant, do not say thank you or you are happy to assist just answer the question." | |
) | |
config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256} | |
llm = CTransformers(model=model_name, | |
config=config, | |
threads=os.cpu_count()) | |
hub_chain = LLMChain(prompt=prompt_template, llm=llm) | |
input_data = {"Answer the question": prompt} | |
generated_answer = hub_chain.run(input_data) | |
print("generated answer") | |
print(generated_answer) | |
return generated_answer | |
def calculate_sentence_similarities(sentences_list): | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
embeddings_list = [model.encode(sentences) for sentences in sentences_list] | |
similarity_matrices = [] | |
for i in range(len(embeddings_list)): | |
for j in range(i + 1, len(embeddings_list)): | |
similarity_matrix = util.pytorch_cos_sim(embeddings_list[i], embeddings_list[j]).numpy() | |
similarity_matrices.append((i, j, similarity_matrix)) | |
return similarity_matrices | |
def highlight_similar_sentences(sentences_list, similarity_threshold): | |
similarity_matrices = calculate_sentence_similarities(sentences_list) | |
highlighted_sentences = [[] for _ in sentences_list] | |
for (i, j, similarity_matrix) in similarity_matrices: | |
for idx1 in range(similarity_matrix.shape[0]): | |
for idx2 in range(similarity_matrix.shape[1]): | |
similarity = similarity_matrix[idx1][idx2] | |
print(f"Similarity between sentence {idx1} in paragraph {i} and sentence {idx2} in paragraph {j}: {similarity:.2f}") | |
if similarity >= similarity_threshold: | |
print("Greater than sim!") | |
if (idx1, "powderblue", similarity) not in highlighted_sentences[i]: | |
highlighted_sentences[i].append((idx1, "powderblue", similarity)) | |
if (idx2, "powderblue", similarity) not in highlighted_sentences[j]: | |
highlighted_sentences[j].append((idx2, "powderblue", similarity)) | |
for i, sentences in enumerate(sentences_list): | |
highlighted = [] | |
for j, sentence in enumerate(sentences): | |
color = "none" | |
score = 0 | |
for idx, col, sim in highlighted_sentences[i]: | |
if idx == j: | |
color = col | |
score = sim | |
break | |
highlighted.append({"text": sentence, "background-color": color, "score": score}) | |
highlighted_sentences[i] = highlighted | |
print(highlighted_sentences) | |
return highlighted_sentences | |
def setTextVisibility(cbg, model_name_input): | |
selected_prompts = cbg | |
answers = [answer_question(prompt, model_name_input) for prompt in selected_prompts] | |
sentences_list = [tokenize.sent_tokenize(answer) for answer in answers] | |
highlighted_sentences_list = highlight_similar_sentences(sentences_list, 0.5) | |
result = [] | |
for idx, (prompt, highlighted_sentences) in enumerate(zip(selected_prompts, highlighted_sentences_list)): | |
result.append(f"<p><strong>Prompt: {prompt}</strong></p>") | |
for sentence_info in highlighted_sentences: | |
color = sentence_info.get('background-color', 'none') # Read the 'color' parameter | |
result.append(f"<p style='background-color: {color};'><strong>{sentence_info['text']}</strong></p>") | |
blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list] | |
blue_scores = [score for scores in blue_scores_list for score in scores] | |
if blue_scores: | |
overall_score = round(np.mean(blue_scores) * 100) | |
else: | |
overall_score = 0 | |
final_html = f"""<div>{''.join(result)}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {overall_score}</div></div>""" | |
print("") | |
print("final html") | |
print(final_html) | |
return final_html | |
def process_inputs(file, relevance, diversity, model_name): | |
# Check if file is uploaded | |
if file is not None: | |
# Read questions from the uploaded Excel file | |
try: | |
df = pd.read_excel(file, engine='openpyxl') | |
except Exception as e: | |
return f"Failed to read Excel file: {e}", None | |
# Ensure that there is only one column in the file | |
if df.shape[1] != 1: | |
return "The uploaded file must contain only one column of questions.", None | |
# Extract the first column | |
questions_list = df.iloc[:, 0] | |
# Initialize lists to store the expanded data | |
expanded_questions = [] | |
expanded_prompts = [] | |
expanded_answers = [] | |
semantic_similarities = [] | |
# Generate prompts for each question and expand the data | |
for question in questions_list: | |
prompts = generate_prompts(question) | |
expanded_questions.extend([question] * len(prompts)) | |
expanded_prompts.extend(prompts) | |
# Generate answers for each prompt | |
answers = [answer_question(prompt, model_name) for prompt in prompts] | |
expanded_answers.extend(answers) | |
# Calculate semantic similarity score for each answer | |
similarity_scores = [] | |
for answer in answers: | |
sentences_list = tokenize.sent_tokenize(answer) | |
highlighted_sentences_list = highlight_similar_sentences([sentences_list], 0.5) | |
print("highlighted sentences list") | |
print(highlighted_sentences_list) | |
blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list] | |
blue_scores = [score for scores in blue_scores_list for score in scores] | |
if blue_scores: | |
overall_score = round(np.mean(blue_scores) * 100) | |
else: | |
overall_score = 0 | |
similarity_scores.append(overall_score) | |
print("overall score") | |
print(overall_score) | |
# Calculate mean similarity score for each question | |
question_similarity_score = np.mean(similarity_scores) | |
print("question sim score") | |
print(question_similarity_score) | |
# Extend the list with the same score for all answers to this question | |
semantic_similarities.extend([question_similarity_score] * len(prompts)) | |
# Combine the expanded data into a DataFrame | |
output_df = pd.DataFrame({ | |
'Questions': expanded_questions, | |
'Generated Prompts': expanded_prompts, | |
'Answers': expanded_answers, | |
'Semantic Similarity': semantic_similarities | |
}) | |
# Save the DataFrame to a new Excel file | |
output_file = "processed_questions.xlsx" | |
output_df.to_excel(output_file, index=False) | |
else: | |
return "No questions provided.", None | |
return "Processing complete. Download the file below.", output_file | |
text_list = [] | |
def get_model_name(model_label): | |
# Retrieve the model name based on the selected label | |
for label, name in LLM_OPTIONS: | |
if label == model_label: | |
return name | |
return None | |
def updateChoices(prompt): | |
newChoices = generate_prompts(prompt) | |
return gr.CheckboxGroup(choices=newChoices) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
with gr.Tab("Live Mode"): | |
gr.Markdown ("## Live Mode Auditing LLMs") | |
gr.Markdown("In Live Auditing Mode, you gain the ability to probe the LLM directly.") | |
gr.Markdown("First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively") | |
with gr.Row(): | |
model_name_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model") | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question") | |
with gr.Row(): | |
generate_button = gr.Button("Generate", variant="primary", min_width=300) | |
with gr.Column(): | |
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True) | |
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg]) | |
with gr.Row() as exec: | |
btnExec = gr.Button("Execute", variant="primary", min_width=200) | |
with gr.Column() as texts: | |
for i in range(10): | |
text = gr.Textbox(label="_", visible=False) | |
text_list.append(text) | |
with gr.Column(): | |
html_result = gr.HTML("""<div style="background-color: powderblue"></div>""") | |
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result) | |
clear = gr.ClearButton(link="http://127.0.0.1:7860") | |
with gr.Tab("Batch Mode"): | |
gr.Markdown("## Batch Mode Auditing LLMs") | |
gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.") | |
gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.") | |
gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.") | |
# llm_dropdown = gr.Dropdown(choices=[ | |
# ("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"), | |
# ("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"), | |
# ("Zephyr-7B", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), | |
# ("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"), | |
# ("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"), | |
# ("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], | |
# label="Large Language Model") | |
with gr.Row(): | |
model_name_batch_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model") | |
file_upload = gr.File(label="Upload an Excel File with Questions", file_types=[".xlsx"]) | |
with gr.Row(): | |
relevance_slider = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True) | |
diversity_slider = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True) | |
submit_button = gr.Button("Submit", variant="primary", min_width=200) | |
output_textbox = gr.Textbox(label="Output") | |
download_button = gr.File(label="Download Processed File") | |
def on_submit(file, relevance, diversity, model_name_batch_input): | |
print("in on submit") | |
print(model_name_batch_input) | |
result, output_file = process_inputs(file, relevance, diversity, model_name_batch_input) | |
return result, output_file | |
submit_button.click(fn=on_submit, inputs=[file_upload, relevance_slider, diversity_slider, model_name_batch_input], outputs=[output_textbox, download_button]) | |
# Launch the Gradio app | |
demo.launch() |