Spaces:
Runtime error
Runtime error
import gradio as gr | |
from dotenv import load_dotenv | |
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub | |
from langchain_core.prompts import PromptTemplate | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from sentence_transformers import SentenceTransformer, util | |
from sklearn.cluster import KMeans | |
import nltk | |
import pandas as pd | |
import smtplib | |
from email.mime.multipart import MIMEMultipart | |
from email.mime.text import MIMEText | |
from email.mime.base import MIMEBase | |
from email import encoders | |
import os | |
nltk.download('punkt') | |
from nltk.tokenize import word_tokenize | |
from nltk import tokenize | |
import numpy as np | |
import scipy.spatial | |
import csv | |
load_dotenv() | |
def generate_prompts(user_input): | |
prompt_template = PromptTemplate( | |
input_variables=["Question"], | |
template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts." | |
) | |
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64} | |
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", | |
config=config) | |
hub_chain = LLMChain(prompt = prompt_template, llm = llm) | |
input_data = {"Question": user_input} | |
generated_prompts = hub_chain.run(input_data) | |
questions_list = generated_prompts.split('\n') | |
formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip()) | |
questions_list = formatted_questions.split("Question:")[1:] | |
return questions_list | |
def answer_question(prompt): | |
prompt_template = PromptTemplate( | |
input_variables=["Question"], | |
template=f"give one answer for {prompt} and do not consider the number behind it." | |
) | |
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64} | |
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", | |
config=config) | |
hub_chain = LLMChain(prompt = prompt_template, llm = llm) | |
input_data = {"Question": prompt} | |
generated_answer = hub_chain.run(input_data) | |
return generated_answer | |
def calculate_similarity(word, other_words, model, threshold=0.5): | |
embeddings_word = model.encode([word]) | |
embeddings_other_words = model.encode(other_words) | |
for i, embedding in enumerate(embeddings_other_words): | |
similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding) | |
if similarity > threshold and similarity < 0.85: | |
return i, similarity | |
return None, None | |
def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.75): | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Split each paragraph into sentences | |
all_sentences = [tokenize.sent_tokenize(paragraph) for paragraph in paragraphs] | |
# Initialize storage for highlighted sentences | |
highlighted_sentences = [['' for sentence in para] for para in all_sentences] | |
colors = ['yellow', 'lightgreen', 'lightblue', 'pink', 'lavender', 'salmon', 'peachpuff', 'powderblue', 'khaki', 'wheat'] | |
# Track which sentences belong to which paragraph | |
sentence_to_paragraph_index = [idx for idx, para in enumerate(all_sentences) for sentence in para] | |
# Encode all sentences into vectors | |
flattened_sentences = [sentence for para in all_sentences for sentence in para] | |
sentence_embeddings = model.encode(flattened_sentences) | |
# Calculate cosine similarities between all pairs of sentences | |
cosine_similarities = util.pytorch_cos_sim(sentence_embeddings, sentence_embeddings) | |
# Iterate through each sentence pair and highlight if they are similar but from different paragraphs | |
color_index = 0 | |
for i, embedding_i in enumerate(sentence_embeddings): | |
for j, embedding_j in enumerate(sentence_embeddings): | |
if i != j and cosine_similarities[i, j] > similarity_threshold and sentence_to_paragraph_index[i] != sentence_to_paragraph_index[j]: | |
color = colors[color_index % len(colors)] | |
if highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] == '': | |
highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] = ("<span style='color: "+ color +"'>"+ flattened_sentences[i]+"</span>") | |
if highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] == '': | |
highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] = ("<span style='color: "+ color +"'>"+ flattened_sentences[j]+"</span>") | |
color_index += 1 # Move to the next color | |
# Combine sentences back into paragraphs | |
highlighted_paragraphs = [' '.join(para) for para in highlighted_sentences] | |
# Combine all paragraphs into one HTML string | |
html_output = '<div>' + '<br/><br/>'.join(highlighted_paragraphs) + '</div>' | |
return highlighted_paragraphs | |
def calculate_similarity_score(sentences): | |
# Encode all sentences to get their embeddings | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
embeddings = model.encode(sentences) | |
# Calculate average cosine similarity | |
total_similarity = 0 | |
comparisons = 0 | |
for i in range(len(embeddings)): | |
for j in range(i+1, len(embeddings)): | |
# Cosine similarity between embeddings | |
similarity = 1 - cosine(embeddings[i], embeddings[j]) | |
total_similarity += similarity | |
comparisons += 1 | |
# Average similarity | |
average_similarity = total_similarity / comparisons if comparisons > 0 else 0 | |
# Scale from [-1, 1] to [0, 100] | |
score_out_of_100 = (average_similarity + 1) / 2 * 100 | |
return score_out_of_100 | |
def answer_question(prompt): | |
prompt_template = PromptTemplate.from_template( | |
input_variables=["Question"], | |
template=f"give one answer for {prompt} and do not consider the number behind it." | |
) | |
config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096} | |
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", | |
config=config, | |
threads=os.cpu_count()) | |
hub_chain = LLMChain(prompt = prompt_template, llm = llm) | |
input_data = {"Question": prompt} | |
generated_answer = hub_chain.run(input_data) | |
return generated_answer | |
def process_inputs(llm, file, relevance, diversity, email): | |
# Check if file is uploaded | |
if file is not None: | |
# Read questions from the uploaded Excel file | |
try: | |
df = pd.read_excel(file.name, engine='openpyxl') | |
except Exception as e: | |
return f"Failed to read Excel file: {e}" | |
# Ensure that there is only one column in the file | |
if df.shape[1] != 1: | |
return "The uploaded file must contain only one column of questions." | |
questions_list = df.iloc[:, 0].tolist() | |
else: | |
return "No questions provided." | |
# Save questions to a CSV file | |
df = pd.DataFrame(questions_list, columns=["Questions"]) | |
csv_file = "questions.csv" | |
df.to_csv(csv_file, index=False) | |
# Email the CSV file | |
sender_email = "[email protected]" | |
sender_password = "opri fcxx crkh bvfj" | |
receiver_email = email | |
subject = "Your Submitted Questions" | |
body = "Thank you for your submission. Please find attached the CSV file containing your questions." | |
message = MIMEMultipart() | |
message['From'] = sender_email | |
message['To'] = receiver_email | |
message['Subject'] = subject | |
message.attach(MIMEText(body, 'plain')) | |
with open(csv_file, "rb") as attachment: | |
part = MIMEBase('application', 'octet-stream') | |
part.set_payload(attachment.read()) | |
encoders.encode_base64(part) | |
part.add_header('Content-Disposition', f"attachment; filename= questions.csv") | |
message.attach(part) | |
with smtplib.SMTP('smtp.gmail.com', 587) as server: | |
server.starttls() | |
server.login(sender_email, sender_password) | |
server.sendmail(sender_email, receiver_email, message.as_string()) | |
return "Submitted" | |
text_list = [] | |
def updateChoices(prompt): | |
newChoices = generate_prompts(prompt) | |
return gr.CheckboxGroup(choices=newChoices) | |
def setTextVisibility(cbg, model_name_input): | |
sentences = [answer_question(text, model_name_input) for text in cbg] | |
# Apply highlighting to all processed sentences, receiving one complete HTML string. | |
highlighted_html = [] | |
highlighted_html = highlight_similar_paragraphs_with_colors(sentences, similarity_threshold=0.75) | |
result = [] | |
# Iterate through each original 'cbg' sentence and pair it with the entire highlighted block. | |
for idx, sentence in enumerate(highlighted_html): | |
result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>") | |
score = round(calculate_similarity_score(highlighted_html)) | |
final_html = f"""<div>{result}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {score}</div></div>""" | |
return final_html | |
# update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg] | |
# update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))] | |
# return update_show + update_hide | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; max-width: 1240px; margin: 0 auto;"> | |
<h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;"> | |
AuditLLM | |
</h1> | |
<hr style="margin-bottom:5px; margin-top:5px;"> | |
</div> | |
""") | |
with gr.Tab("Live Mode"): | |
gr.HTML(""" | |
<div> | |
<h4> Live Mode Auditing LLMs <h4> | |
<div> | |
<div style = "font-size: 13px;"> | |
<p><In Live Auditing Mode, you gain the ability to probe the LLM directly./p> | |
<p>First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively.</p> | |
</div> | |
""") | |
with gr.Row(): | |
model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model") | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question") | |
with gr.Row(): | |
generate_button = gr.Button("Generate", variant="primary", min_width=300) | |
with gr.Column(): | |
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True) | |
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg]) | |
with gr.Row() as exec: | |
btnExec = gr.Button("Execute", variant="primary", min_width=200) | |
with gr.Column() as texts: | |
for i in range(10): | |
text = gr.Textbox(label="_", visible=False) | |
text_list.append(text) | |
with gr.Column(): | |
html_result = gr.HTML("""<div style="color: red"></div>""") | |
#btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list) | |
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result) | |
gr.HTML(""" | |
<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: </div> | |
""") | |
clear = gr.ClearButton(link = "http://127.0.0.1:7865") | |
with gr.Tab("Batch Mode"): | |
gr.HTML(""" | |
<div> | |
<h4> Batch Mode Auditing LLMs <h4> | |
<div> | |
<div style = "font-size: 13px;"> | |
<p>In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.</p> | |
<p>To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.</p> | |
<p>Upon completion, please provide your email address. We will compile and send the answers to you promptly.</p> | |
</div> | |
""") | |
gr.Markdown("## Batch Mode Auditing LLMs") | |
gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.") | |
gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.") | |
gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.") | |
llm_dropdown = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), ("Vicuna", "TheBloke/vicuna-33B-GGUF"), ("Claude", "TheBloke/claude2-alpaca-13B-GGUF"), ("Alpaca", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model") | |
file_upload = gr.File(label="Upload a File with Questions", file_types=["csv"]) | |
relevance_slider = gr.Slider(0, 100, value=70, step=1, label="Relevance") | |
diversity_slider = gr.Slider(0, 100, value=25, step=1, label="Diversity") | |
email_input = gr.Textbox(label="Enter your email address", placeholder="[email protected]") | |
submit_button = gr.Button("Submit") | |
output_textbox = gr.Textbox(label="Output") | |
submit_button.click(fn=process_inputs, inputs=[llm_dropdown, file_upload, relevance_slider, diversity_slider, email_input], outputs=output_textbox) | |
# Launch the Gradio app | |
demo.launch() |