File size: 12,833 Bytes
f7ecb69
5922875
313e518
 
 
 
 
ef6d74f
aa00158
e2f6264
 
aa00158
 
 
ef6d74f
f7ecb69
5922875
608a413
f7ecb69
f163cb3
f7ecb69
313e518
f7ecb69
313e518
f7ecb69
313e518
f7ecb69
 
f163cb3
313e518
f7ecb69
f163cb3
 
f7ecb69
 
 
 
313e518
ceda1ed
f7ecb69
313e518
f7ecb69
313e518
 
 
f7ecb69
 
ceda1ed
 
2508cf4
2303155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608a413
 
2303155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe00f69
2303155
 
 
 
608a413
 
2303155
608a413
 
 
 
 
 
 
 
 
fe00f69
 
1c13787
608a413
1c13787
 
 
 
 
 
 
 
fe00f69
1c13787
f7ecb69
 
 
 
 
 
07f2e3e
 
 
 
2303155
07f2e3e
 
 
 
 
 
2303155
 
 
 
07f2e3e
2303155
 
07f2e3e
2303155
 
 
 
07f2e3e
2303155
 
 
 
 
07f2e3e
2303155
1c13787
07f2e3e
1c13787
 
 
b6528b0
5e953eb
f7ecb69
 
 
 
8a72869
f7ecb69
 
8a72869
1c13787
f7ecb69
 
5e953eb
07f2e3e
 
5e953eb
 
 
07f2e3e
5e953eb
 
 
 
07f2e3e
 
 
 
 
5e953eb
 
 
 
07f2e3e
 
 
 
 
 
 
1c13787
07f2e3e
 
1c13787
5e953eb
 
 
1c13787
5e953eb
1c13787
5e953eb
1c13787
 
 
5e953eb
1c13787
5e953eb
1c13787
8a72869
1c13787
f7ecb69
1c13787
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
from dotenv import load_dotenv
from langchain import PromptTemplate, LLMChain, HuggingFaceHub
from langchain.llms import CTransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
import numpy as np
import scipy.spatial


load_dotenv()

def generate_prompts(user_input):
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts."
    )
    config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
    llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
                        config=config)
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": user_input}

    generated_prompts = hub_chain.run(input_data)  
    questions_list = generated_prompts.split('\n') 
    

    formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
    questions_list = formatted_questions.split("Question:")[1:]
    return questions_list

def answer_question(prompt):
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"give one answer for {prompt} and do not consider the number behind it."
    )
    config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
    llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
                        config=config)
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": prompt}
    generated_answer = hub_chain.run(input_data)  
    return generated_answer

def calculate_similarity(word, other_words, model, threshold=0.5):
    embeddings_word = model.encode([word])
    embeddings_other_words = model.encode(other_words)
    for i, embedding in enumerate(embeddings_other_words):
        similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
        if similarity > threshold and similarity < 0.85:
            return i, similarity
    return None, None


def highlight_words_within_cluster(sentences, model, exclude_words):
    # Create a dictionary to map words to color codes
    word_to_color = {}
    color_codes = [
    "\033[41m",  # Background Red
    "\033[42m",  # Background Green
    "\033[43m",  # Background Yellow
    "\033[44m",  # Background Blue
    "\033[45m",  # Background Purple
    "\033[46m",  # Background Cyan
    "\033[100m", # Background Dark Gray
    "\033[101m", # Background Light Red
    "\033[102m", # Background Light Green
    "\033[103m", # Background Light Yellow
    "\033[104m", # Background Light Blue
    "\033[105m", # Background Light Purple
    "\033[106m", # Background Light Cyan
    "\033[47m"   # Background Gray
    ]
    html_color_codes = ["red", "green", "blue", "purple", "cyan", "fuchsia", "lime", "maroon", "olive", "navy", "teal", "gray"]
    color_index = 0

    highlighted_sentences = []
    for sentence in sentences:
        words = word_tokenize(sentence)
        other_sentences = [s for s in sentences if s != sentence]
        all_other_words = [word for s in other_sentences for word in word_tokenize(s) if word.lower() not in exclude_words and word.isalnum()]

        highlighted_words = []
        for word in words:
            if word.lower() not in exclude_words and word.isalnum():
                match_index, similarity = calculate_similarity(word, all_other_words, model)
                if match_index is not None:
                    # Assign color to the word if not already assigned
                    if word not in word_to_color:
                        word_to_color[word] = html_color_codes[color_index % len(html_color_codes)]
                        color_index += 1
                    # Highlight the word
                    #highlighted_word = f"{word_to_color[word]}{word}\033[0m"
                    highlighted_word = "<span style='color: "+ word_to_color[word] +"'>"+ word +"</span>"
                else:
                    highlighted_word = word
                highlighted_words.append(highlighted_word)
            else:
                highlighted_words.append(word)

        highlighted_sentences.append(' '.join(highlighted_words))
    return highlighted_sentences

# Rest of the code, including the cluster_sentences function, remains the same

exclude_words = {"a", "the", "for", "from", "of", "in","over", "as", "on", "is", "am", "have", "an","has", "had", "and", "by", "it", "its", "those", "these", "was", "were", "their", "them", "I", "you", "also", "your", "me", "after"}

def cluster_sentences(sentences, model, num_clusters=3):
    embeddings = model.encode(sentences)
    kmeans = KMeans(n_clusters=num_clusters)
    kmeans.fit(embeddings)
    return kmeans.labels_

model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}

sentences = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",

"Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",

"A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",

"In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]

# Step 1: Cluster the sentences
num_clusters = 1
sentence_clusters = cluster_sentences(sentences, model, num_clusters)

# Step 2: Highlight similar words within each cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence, cluster_id in zip(sentences, sentence_clusters):
    clustered_sentences[cluster_id].append(sentence)

highlighted_clustered_sentences = []
for cluster in clustered_sentences:
    highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
    
    
text_list = []

def updateChoices(prompt):
    newChoices = generate_prompts(prompt)
    return gr.CheckboxGroup(choices=newChoices)

def setTextVisibility(cbg, model_name_input):
    sentences = []
    result = []
    model = SentenceTransformer('all-mpnet-base-v2')
    exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
    sentences_org = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
                "Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
                "A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
                "In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
    for text in cbg:
         sentences.append(answer_question(text, model_name_input))
    
    # Step 1: Cluster the sentences
    num_clusters = 1
    sentence_clusters = cluster_sentences(sentences, model, num_clusters)

    # Step 2: Highlight similar words within each cluster
    clustered_sentences = [[] for _ in range(num_clusters)]

    for sentence, cluster_id in zip(sentences, sentence_clusters):
        clustered_sentences[cluster_id].append(sentence)
    
    highlighted_clustered_sentences = []

    for cluster in clustered_sentences:
        highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
    
    for idx, sentence in enumerate(highlighted_clustered_sentences):
        result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")

    return result
    

    # update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
    # update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
    # return update_show + update_hide

with gr.Blocks(theme=gr.themes.Soft()) as demo:

    gr.HTML("""
    <div style="text-align: center; max-width: 1240px; margin: 0 auto;">
    <h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
    Auditing LLMs
    </h1>
    <hr style="margin-bottom:5px; margin-top:5px;">
    
    
    </div>
    """)
    with gr.Tab("Live Mode"):
        with gr.Row():
            model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
        with gr.Row():
            generate_button = gr.Button("Generate", variant="primary", min_width=300)
        with gr.Column():
            cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
        
        generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])

        with gr.Row() as exec: 
            btnExec = gr.Button("Execute", variant="primary", min_width=200)


        with gr.Column() as texts:
            for i in range(10):
                text = gr.Textbox(label="_", visible=False)
                text_list.append(text)

        with gr.Column():
            html_result = gr.HTML("""<div style="color: red"></div>""")

        #btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
        btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
        gr.HTML("""
        <div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: 76%</div>
                """)

        clear = gr.ClearButton(link = "http://127.0.0.1:7865") 

    with gr.Tab("Batch Mode"):
        with gr.Row():
            model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
        with gr.Row():
            prompt_input = gr.Textbox(label="RELAVENCY", placeholder="Relavancy")
            prompt_input = gr.Textbox(label="Diversity", placeholder="Diversity")

        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your email address", placeholder="Enter Your Email Address")
        with gr.Row():
            generate_button = gr.Button("Submit", variant="primary")

    
# Launch the Gradio app
demo.launch()