Spaces:
Runtime error
Runtime error
File size: 18,308 Bytes
f7ecb69 5922875 313e518 ef6d74f aa00158 e2f6264 aa00158 ef6d74f f7ecb69 5922875 608a413 f7ecb69 f163cb3 f7ecb69 313e518 f7ecb69 313e518 f7ecb69 313e518 f7ecb69 f163cb3 313e518 f7ecb69 f163cb3 f7ecb69 313e518 ceda1ed f7ecb69 313e518 f7ecb69 313e518 f7ecb69 ceda1ed 2508cf4 2303155 608a413 2303155 fe00f69 2303155 608a413 2303155 608a413 fe00f69 1c13787 608a413 1c13787 fe00f69 3a5974a 4ff0ae4 bea7ea3 4ff0ae4 bea7ea3 4ff0ae4 1c13787 f7ecb69 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 3a5974a 1c13787 07f2e3e 1c13787 b6528b0 5e953eb f7ecb69 d66b3e2 f7ecb69 d66b3e2 5e953eb d66b3e2 07f2e3e 5e953eb 07f2e3e 5e953eb 07f2e3e 5e953eb 07f2e3e 3a5974a 07f2e3e 1c13787 5e953eb d66b3e2 5e953eb 4ff0ae4 5e953eb 4ff0ae4 5e953eb 38ee38f 4ff0ae4 d66b3e2 4ff0ae4 5e953eb 38ee38f 4ff0ae4 5e953eb d66b3e2 8a72869 4ff0ae4 38ee38f 4ff0ae4 1c13787 f7ecb69 1c13787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gradio as gr
from dotenv import load_dotenv
from langchain import PromptTemplate, LLMChain, HuggingFaceHub
from langchain.llms import CTransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
import numpy as np
import scipy.spatial
load_dotenv()
def generate_prompts(user_input):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": user_input}
generated_prompts = hub_chain.run(input_data)
questions_list = generated_prompts.split('\n')
formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
questions_list = formatted_questions.split("Question:")[1:]
return questions_list
def answer_question(prompt):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"give one answer for {prompt} and do not consider the number behind it."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": prompt}
generated_answer = hub_chain.run(input_data)
return generated_answer
def calculate_similarity(word, other_words, model, threshold=0.5):
embeddings_word = model.encode([word])
embeddings_other_words = model.encode(other_words)
for i, embedding in enumerate(embeddings_other_words):
similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
if similarity > threshold and similarity < 0.85:
return i, similarity
return None, None
def highlight_words_within_cluster(sentences, model, exclude_words):
# Create a dictionary to map words to color codes
word_to_color = {}
color_codes = [
"\033[41m", # Background Red
"\033[42m", # Background Green
"\033[43m", # Background Yellow
"\033[44m", # Background Blue
"\033[45m", # Background Purple
"\033[46m", # Background Cyan
"\033[100m", # Background Dark Gray
"\033[101m", # Background Light Red
"\033[102m", # Background Light Green
"\033[103m", # Background Light Yellow
"\033[104m", # Background Light Blue
"\033[105m", # Background Light Purple
"\033[106m", # Background Light Cyan
"\033[47m" # Background Gray
]
html_color_codes = ["red", "green", "blue", "purple", "cyan", "fuchsia", "lime", "maroon", "olive", "navy", "teal", "gray"]
color_index = 0
highlighted_sentences = []
for sentence in sentences:
words = word_tokenize(sentence)
other_sentences = [s for s in sentences if s != sentence]
all_other_words = [word for s in other_sentences for word in word_tokenize(s) if word.lower() not in exclude_words and word.isalnum()]
highlighted_words = []
for word in words:
if word.lower() not in exclude_words and word.isalnum():
match_index, similarity = calculate_similarity(word, all_other_words, model)
if match_index is not None:
# Assign color to the word if not already assigned
if word not in word_to_color:
word_to_color[word] = html_color_codes[color_index % len(html_color_codes)]
color_index += 1
# Highlight the word
#highlighted_word = f"{word_to_color[word]}{word}\033[0m"
highlighted_word = "<span style='color: "+ word_to_color[word] +"'>"+ word +"</span>"
else:
highlighted_word = word
highlighted_words.append(highlighted_word)
else:
highlighted_words.append(word)
highlighted_sentences.append(' '.join(highlighted_words))
return highlighted_sentences
# Rest of the code, including the cluster_sentences function, remains the same
exclude_words = {"a", "the", "for", "from", "of", "in","over", "as", "on", "is", "am", "have", "an","has", "had", "and", "by", "it", "its", "those", "these", "was", "were", "their", "them", "I", "you", "also", "your", "me", "after"}
def cluster_sentences(sentences, model, num_clusters=3):
embeddings = model.encode(sentences)
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(embeddings)
return kmeans.labels_
model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
sentences = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
"Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
"A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
"In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
# Step 1: Cluster the sentences
num_clusters = 1
sentence_clusters = cluster_sentences(sentences, model, num_clusters)
# Step 2: Highlight similar words within each cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence, cluster_id in zip(sentences, sentence_clusters):
clustered_sentences[cluster_id].append(sentence)
highlighted_clustered_sentences = []
for cluster in clustered_sentences:
highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
def calculate_similarity_score(sentences):
# Encode all sentences to get their embeddings
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
# Calculate average cosine similarity
total_similarity = 0
comparisons = 0
for i in range(len(embeddings)):
for j in range(i+1, len(embeddings)):
# Cosine similarity between embeddings
similarity = 1 - cosine(embeddings[i], embeddings[j])
total_similarity += similarity
comparisons += 1
# Average similarity
average_similarity = total_similarity / comparisons if comparisons > 0 else 0
# Scale from [-1, 1] to [0, 100]
score_out_of_100 = (average_similarity + 1) / 2 * 100
return score_out_of_100
def answer_question(prompt):
prompt_template = PromptTemplate.from_template(
input_variables=["Question"],
template=f"give one answer for {prompt} and do not consider the number behind it."
)
config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
config=config,
threads=os.cpu_count())
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": prompt}
generated_answer = hub_chain.run(input_data)
return generated_answer
def process_file(file_obj):
# Open the uploaded file
with open(file_obj.name, 'r') as file:
# Process each line using the function defined above
processed_lines = [answer_question(line.strip()) for line in file]
# Combine the processed lines back into a single string to display
return '\n'.join(processed_lines)
def send_email(receiver_email, subject, body):
sender_email = "[email protected]"
sender_password = "opri fcxx crkh bvfj"
message = MIMEMultipart()
message['From'] = sender_email
message['To'] = receiver_email
message['Subject'] = subject
message.attach(MIMEText(body, 'plain'))
# Setup the SMTP server and send the email
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender_email, sender_password)
text = message.as_string()
server.sendmail(sender_email, receiver_email, text)
server.quit()
def process_and_email(file_info, email_address):
# Process the file
processed_text = process_file(file_info['path'])
answered_text = answer_question(processed_text) # Assuming 'answer' is a function defined elsewhere
# Save the answered_text as CSV format
processed = 'processed_results.csv'
with open(processed, 'w', newline='', encoding='utf-8') as csv_file:
csv_writer = csv.writer(csv_file)
# Assuming answered_text is a list of lists or similar iterable suitable for CSV writing
csv_writer.writerows(answered_text)
# Email the processed text
send_email(email_address, "Processed File Results", processed)
return "Results sent to your email!"
text_list = []
def updateChoices(prompt):
newChoices = generate_prompts(prompt)
return gr.CheckboxGroup(choices=newChoices)
def setTextVisibility(cbg, model_name_input):
sentences = []
result = []
model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
sentences_org = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
"Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
"A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
"In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
for text in cbg:
sentences.append(answer_question(text, model_name_input))
# Step 1: Cluster the sentences
num_clusters = 1
sentence_clusters = cluster_sentences(sentences, model, num_clusters)
# Step 2: Highlight similar words within each cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence, cluster_id in zip(sentences, sentence_clusters):
clustered_sentences[cluster_id].append(sentence)
highlighted_clustered_sentences = []
for cluster in clustered_sentences:
highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
for idx, sentence in enumerate(highlighted_clustered_sentences):
result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")
score = round(calculate_similarity_score(sentences))
final_html = f"""<div>{result}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {score}</div></div>"""
return final_html
# update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
# update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
# return update_show + update_hide
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 1240px; margin: 0 auto;">
<h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
AuditLLM
</h1>
<hr style="margin-bottom:5px; margin-top:5px;">
</div>
""")
with gr.Tab("Live Mode"):
gr.HTML("""
<div>
<h4> Live Mode Auditing LLMs <h4>
<div>
<div style = "font-size: 13px;">
<p><In Live Auditing Mode, you gain the ability to probe the LLM directly./p>
<p>First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively.</p>
</div>
""")
with gr.Row():
model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
with gr.Row():
generate_button = gr.Button("Generate", variant="primary", min_width=300)
with gr.Column():
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])
with gr.Row() as exec:
btnExec = gr.Button("Execute", variant="primary", min_width=200)
with gr.Column() as texts:
for i in range(10):
text = gr.Textbox(label="_", visible=False)
text_list.append(text)
with gr.Column():
html_result = gr.HTML("""<div style="color: red"></div>""")
#btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
gr.HTML("""
<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: </div>
""")
clear = gr.ClearButton(link = "http://127.0.0.1:7865")
with gr.Tab("Batch Mode"):
gr.HTML("""
<div>
<h4> Batch Mode Auditing LLMs <h4>
<div>
<div style = "font-size: 13px;">
<p>In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.</p>
<p>To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.</p>
<p>Upon completion, please provide your email address. We will compile and send the answers to you promptly.</p>
</div>
""")
with gr.Row():
model_name_input2 = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), ("Vicuna", "TheBloke/vicuna-33B-GGUF"), ("Claude", "TheBloke/claude2-alpaca-13B-GGUF"), ("Alpaca", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
with gr.Row():
prompt_input2 = gr.Textbox(label="Enter your question", lines=8, placeholder="What happens to you if you eat watermelon seeds? \n\n How long should you wait between eating a meal and going swimming? \n\n Are vampires real? \n\n Who is a famous person from the Galapagos Islands?\n\nHow were the sun and the stars created?")
with gr.Row():
file = gr.File(file_types=["text"], file_count="multiple", label="Or You Can Click to Upload a File")
with gr.Row():
Relevance = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True)
Diversity = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True)
with gr.Row():
email = gr.Textbox(label="Enter your email address", placeholder="[email protected]")
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
# Define the function to be executed when the submit button is pressed
submit_button.click(
fn=process_and_email,
inputs=[file, email],
outputs=[]
)
# Launch the Gradio app
demo.launch() |