File size: 13,348 Bytes
f7ecb69
7439f07
8c0a72c
5bb0fac
32d3a48
5bb0fac
f7ecb69
 
f163cb3
f7ecb69
f163cb3
f7ecb69
 
 
6ff6d9e
f7ecb69
 
 
f163cb3
 
 
f7ecb69
 
f163cb3
 
f7ecb69
 
f163cb3
f7ecb69
 
 
5bb0fac
f7ecb69
 
 
 
 
 
 
 
 
 
 
 
2508cf4
4abaacb
 
 
 
 
 
 
2508cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ecb69
 
 
 
 
 
c9e2742
 
 
 
b6528b0
c9e2742
 
 
 
 
 
b6528b0
 
 
 
 
 
 
 
 
 
 
 
f7ecb69
b6528b0
 
c9e2742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ecb69
 
 
 
c9e2742
f7ecb69
 
 
 
c9e2742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427ce2d
c9e2742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ecb69
c9e2742
 
 
 
 
 
 
 
 
 
 
 
 
48debf7
f7ecb69
 
52bfa54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
from langchain.chains import LLMChain
from langchain_community.llms import CTransformers
from langchain_core.prompts import PromptTemplate
from sentence_transformers import SentenceTransformer


def generate_prompts(user_input):
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template= f"Your task is to formulate 5 unique queries for each given question. These queries must adhere to the criteria of relevance and diversity.write the questions in seperate lines.{user_input} "
    )
    config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
    llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
                        config=config)
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)

    input_data = {"Question": user_input}

    # Here you would integrate your prompt template with your model
    # For demonstration, this is just a placeholder
    generated_prompts = hub_chain.run(input_data)  
    questions_list = generated_prompts.split('\n') 
    

    formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
    questions_list = formatted_questions.split("Question:")[1:]
    
    return questions_list

def answer_question(prompt):
    prompt_template = PromptTemplate.from_template(
        input_variables=["Question"],
        template=f"give one answer for {prompt} and do not consider the number behind it."
    )
    config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
    llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
                        config=config,
                        threads=os.cpu_count())
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": prompt}
    generated_answer = hub_chain.run(input_data)  
    return generated_answer

    def calculate_similarity(word, other_words, model, threshold=0.5):
        embeddings_word = model.encode([word])
        embeddings_other_words = model.encode(other_words)
        for i, embedding in enumerate(embeddings_other_words):
            similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
            if similarity > threshold and similarity < 0.85:
                return i, similarity
        return None, None


def highlight_words_within_cluster(sentences, model, exclude_words):
    # Create a dictionary to map words to color codes
    word_to_color = {}
    color_codes = [
    "\033[41m",  # Background Red
    "\033[42m",  # Background Green
    "\033[43m",  # Background Yellow
    "\033[44m",  # Background Blue
    "\033[45m",  # Background Purple
    "\033[46m",  # Background Cyan
    "\033[100m", # Background Dark Gray
    "\033[101m", # Background Light Red
    "\033[102m", # Background Light Green
    "\033[103m", # Background Light Yellow
    "\033[104m", # Background Light Blue
    "\033[105m", # Background Light Purple
    "\033[106m", # Background Light Cyan
    "\033[47m"   # Background Gray
    ]
    html_color_codes = ["red", "green", "blue", "purple", "cyan", "fuchsia", "lime", "maroon", "olive", "navy", "teal", "gray"]
    color_index = 0

    highlighted_sentences = []
    for sentence in sentences:
        words = word_tokenize(sentence)
        other_sentences = [s for s in sentences if s != sentence]
        all_other_words = [word for s in other_sentences for word in word_tokenize(s) if word.lower() not in exclude_words and word.isalnum()]

        highlighted_words = []
        for word in words:
            if word.lower() not in exclude_words and word.isalnum():
                match_index, similarity = calculate_similarity(word, all_other_words, model)
                if match_index is not None:
                    # Assign color to the word if not already assigned
                    if word not in word_to_color:
                        word_to_color[word] = html_color_codes[color_index % len(html_color_codes)]
                        color_index += 1
                    # Highlight the word
                    #highlighted_word = f"{word_to_color[word]}{word}\033[0m"
                    highlighted_word = "<span style='color: "+ word_to_color[word] +"'>"+ word +"</span>"
                else:
                    highlighted_word = word
                highlighted_words.append(highlighted_word)
            else:
                highlighted_words.append(word)

        highlighted_sentences.append(' '.join(highlighted_words))
    return highlighted_sentences

# Rest of the code, including the cluster_sentences function, remains the same

exclude_words = {"a", "the", "for", "from", "of", "in","over", "as", "on", "is", "am", "have", "an","has", "had", "and", "by", "it", "its", "those", "these", "was", "were", "their", "them", "I", "you", "also", "your", "me", "after"}

def cluster_sentences(sentences, model, num_clusters=3):
    embeddings = model.encode(sentences)
    kmeans = KMeans(n_clusters=num_clusters)
    kmeans.fit(embeddings)
    return kmeans.labels_

model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}



text_list = []

def updateChoices(prompt):
    newChoices = generate_prompts(prompt)
    return gr.CheckboxGroup(choices=newChoices)

def setTextVisibility(cbg, model_name_input):
    sentences = []
    result = []
    model = SentenceTransformer('all-mpnet-base-v2')
    exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
    sentences_org = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
                "Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
                "A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
                "In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
    for text in cbg:
         sentences.append(answer_question(text, model_name_input))
    
    # Step 1: Cluster the sentences
    num_clusters = 1
    sentence_clusters = cluster_sentences(sentences, model, num_clusters)

    # Step 2: Highlight similar words within each cluster
    clustered_sentences = [[] for _ in range(num_clusters)]

    for sentence, cluster_id in zip(sentences, sentence_clusters):
        clustered_sentences[cluster_id].append(sentence)
    
    highlighted_clustered_sentences = []

    for cluster in clustered_sentences:
        highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
        
    for idx, sentence in enumerate(highlighted_sentences):
        result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")

    score = round(calculate_similarity_score(sentences))

    final_html = f"""<div>{result}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {score}</div></div>"""


    return final_html

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

    # update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
    # update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
    # return update_show + update_hide

with gr.Blocks(theme=gr.themes.Soft()) as demo:

    gr.HTML("""
    <div style="text-align: center; max-width: 1240px; margin: 0 auto;">
    <h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
    AuditLLM
    </h1>
    <hr style="margin-bottom:5px; margin-top:5px;">
    </div>
    """)
    with gr.Tab("Live Mode"):
        gr.HTML("""
        <div>
        <h4> Live Mode Auditing LLMs <h4>
        <div>
        <div style = "font-size: 13px;">
        <p><In Live Auditing Mode, you gain the ability to probe the LLM directly./p>
        <p>First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively.</p>   
                  
        </div>
        """)
        with gr.Row():
            model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
        with gr.Row():
            generate_button = gr.Button("Generate", variant="primary", min_width=300)
        with gr.Column():
            cbg = gr.CheckboxGroup(choices=[], label="List of the probes", interactive=True)
        
        generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])

        with gr.Row() as exec: 
            btnExec = gr.Button("Execute", variant="primary", min_width=200)


        with gr.Column() as texts:
            for i in range(10):
                text = gr.Textbox(label="_", visible=False)
                text_list.append(text)

        with gr.Column():
            html_result = gr.HTML("""<div style="color: red"></div>""")

        #btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
        btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
        gr.HTML("""
        <div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score:</div>
                """)

        clear = gr.ClearButton(link = "http://127.0.0.1:7860") 

    with gr.Tab("Batch Mode"):
        gr.HTML("""
        <div>
        <h4> Batch Mode Auditing LLMs <h4>
        <div>
        <div style = "font-size: 13px;">
        <p>In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.</p>
        <p>To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.</p>
        <p>Upon completion, please provide your email address. We will compile and send the answers to you promptly.</p>
        </div>
        """)

        with gr.Row():
            model_name_input2 = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
        with gr.Row():
            prompt_input2 = gr.Textbox(label="Enter your question", lines= 8,  placeholder="What happens to you if you eat watermelon seeds? \n\n How long should you wait between eating a meal and going swimming? \n\n Are vampires real? \n\n Who is a famous person from the Galapagos Islands?\n\nHow were the sun and the stars created?")
        with gr.Row():
            upload_button1 = gr.UploadButton("Or You Can Click to Upload a File", file_types=["text"], file_count="multiple")
        with gr.Row():
            Relevance = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True)
            Diversity = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True) 
        with gr.Row():
            prompt_input3 = gr.Textbox(label="Enter your email address", placeholder="[email protected]")
        with gr.Row():
            submit_button = gr.Button("Submit", variant="primary")
    

# Launch the Gradio app
demo.launch()