Spaces:
Runtime error
Runtime error
File size: 12,798 Bytes
f7ecb69 5922875 313e518 ef6d74f aa00158 ef6d74f f7ecb69 5922875 608a413 f7ecb69 f163cb3 f7ecb69 313e518 f7ecb69 313e518 f7ecb69 313e518 f7ecb69 f163cb3 313e518 f7ecb69 f163cb3 f7ecb69 313e518 ceda1ed f7ecb69 313e518 f7ecb69 313e518 f7ecb69 ceda1ed 2508cf4 2303155 608a413 2303155 fe00f69 2303155 608a413 2303155 608a413 fe00f69 1c13787 608a413 1c13787 fe00f69 1c13787 f7ecb69 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 07f2e3e 2303155 1c13787 07f2e3e 1c13787 b6528b0 5e953eb f7ecb69 8a72869 f7ecb69 8a72869 1c13787 f7ecb69 5e953eb 07f2e3e 5e953eb 07f2e3e 5e953eb 07f2e3e 5e953eb 07f2e3e 1c13787 07f2e3e 1c13787 5e953eb 1c13787 5e953eb 1c13787 5e953eb 1c13787 5e953eb 1c13787 5e953eb 1c13787 8a72869 1c13787 f7ecb69 1c13787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
from dotenv import load_dotenv
from langchain import PromptTemplate, LLMChain, HuggingFaceHub
from langchain.llms import CTransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
from nltk.tokenize import word_tokenize
import numpy as np
import scipy.spatial
load_dotenv()
def generate_prompts(user_input):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": user_input}
generated_prompts = hub_chain.run(input_data)
questions_list = generated_prompts.split('\n')
formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
questions_list = formatted_questions.split("Question:")[1:]
return questions_list
def answer_question(prompt):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"give one answer for {prompt} and do not consider the number behind it."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": prompt}
generated_answer = hub_chain.run(input_data)
return generated_answer
def calculate_similarity(word, other_words, model, threshold=0.5):
embeddings_word = model.encode([word])
embeddings_other_words = model.encode(other_words)
for i, embedding in enumerate(embeddings_other_words):
similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
if similarity > threshold and similarity < 0.85:
return i, similarity
return None, None
def highlight_words_within_cluster(sentences, model, exclude_words):
# Create a dictionary to map words to color codes
word_to_color = {}
color_codes = [
"\033[41m", # Background Red
"\033[42m", # Background Green
"\033[43m", # Background Yellow
"\033[44m", # Background Blue
"\033[45m", # Background Purple
"\033[46m", # Background Cyan
"\033[100m", # Background Dark Gray
"\033[101m", # Background Light Red
"\033[102m", # Background Light Green
"\033[103m", # Background Light Yellow
"\033[104m", # Background Light Blue
"\033[105m", # Background Light Purple
"\033[106m", # Background Light Cyan
"\033[47m" # Background Gray
]
html_color_codes = ["red", "green", "blue", "purple", "cyan", "fuchsia", "lime", "maroon", "olive", "navy", "teal", "gray"]
color_index = 0
highlighted_sentences = []
for sentence in sentences:
words = word_tokenize(sentence)
other_sentences = [s for s in sentences if s != sentence]
all_other_words = [word for s in other_sentences for word in word_tokenize(s) if word.lower() not in exclude_words and word.isalnum()]
highlighted_words = []
for word in words:
if word.lower() not in exclude_words and word.isalnum():
match_index, similarity = calculate_similarity(word, all_other_words, model)
if match_index is not None:
# Assign color to the word if not already assigned
if word not in word_to_color:
word_to_color[word] = html_color_codes[color_index % len(html_color_codes)]
color_index += 1
# Highlight the word
#highlighted_word = f"{word_to_color[word]}{word}\033[0m"
highlighted_word = "<span style='color: "+ word_to_color[word] +"'>"+ word +"</span>"
else:
highlighted_word = word
highlighted_words.append(highlighted_word)
else:
highlighted_words.append(word)
highlighted_sentences.append(' '.join(highlighted_words))
return highlighted_sentences
# Rest of the code, including the cluster_sentences function, remains the same
exclude_words = {"a", "the", "for", "from", "of", "in","over", "as", "on", "is", "am", "have", "an","has", "had", "and", "by", "it", "its", "those", "these", "was", "were", "their", "them", "I", "you", "also", "your", "me", "after"}
def cluster_sentences(sentences, model, num_clusters=3):
embeddings = model.encode(sentences)
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(embeddings)
return kmeans.labels_
model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
sentences = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
"Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
"A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
"In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
# Step 1: Cluster the sentences
num_clusters = 1
sentence_clusters = cluster_sentences(sentences, model, num_clusters)
# Step 2: Highlight similar words within each cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence, cluster_id in zip(sentences, sentence_clusters):
clustered_sentences[cluster_id].append(sentence)
highlighted_clustered_sentences = []
for cluster in clustered_sentences:
highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
text_list = []
def updateChoices(prompt):
newChoices = generate_prompts(prompt)
return gr.CheckboxGroup(choices=newChoices)
def setTextVisibility(cbg, model_name_input):
sentences = []
result = []
model = SentenceTransformer('all-mpnet-base-v2')
exclude_words = {"a", "the", "for", "from", "of", "in", "over", "as", "on", "is", "am", "have", "an", "has", "had", "and", "by", "it", "its", "those", "these", "above", "to"}
sentences_org = ["In a quaint little town nestled in the heart of the mountains, a small bakery famous for its artisanal breads and pastries had a line of customers stretching out the door, eagerly waiting to savor the freshly baked goods that were known far and wide for their delightful flavors.",
"Within a picturesque mountain village, there stood a renowned bakery, celebrated for its handcrafted bread and sweet treats, attracting a long queue of patrons each morning, all keen to enjoy the baked delicacies that had gained widespread acclaim for their exceptional taste.",
"A charming bakery, located in a small mountainous hamlet, renowned for producing exquisite handmade pastries and bread, was bustling with a crowd of eager customers lined up outside, each anticipating the chance to indulge in the famous baked items celebrated for their extraordinary deliciousness.",
"In a cozy, mountain-encircled village, a beloved bakery was the center of attraction, known for its traditional baking methods and delightful pastries, drawing a consistent stream of people waiting outside, all desiring to experience the renowned flavors that made the bakery's products distinctively mouth-watering."]
for text in cbg:
sentences.append(answer_question(text, model_name_input))
# Step 1: Cluster the sentences
num_clusters = 1
sentence_clusters = cluster_sentences(sentences, model, num_clusters)
# Step 2: Highlight similar words within each cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence, cluster_id in zip(sentences, sentence_clusters):
clustered_sentences[cluster_id].append(sentence)
highlighted_clustered_sentences = []
for cluster in clustered_sentences:
highlighted_clustered_sentences.extend(highlight_words_within_cluster(cluster, model, exclude_words))
for idx, sentence in enumerate(highlighted_clustered_sentences):
result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")
return result
# update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
# update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
# return update_show + update_hide
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 1240px; margin: 0 auto;">
<h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
Auditing LLMs
</h1>
<hr style="margin-bottom:5px; margin-top:5px;">
</div>
""")
with gr.Tab("Live Mode"):
with gr.Row():
model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
with gr.Row():
generate_button = gr.Button("Generate", variant="primary", min_width=300)
with gr.Column():
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])
with gr.Row() as exec:
btnExec = gr.Button("Execute", variant="primary", min_width=200)
with gr.Column() as texts:
for i in range(10):
text = gr.Textbox(label="_", visible=False)
text_list.append(text)
with gr.Column():
html_result = gr.HTML("""<div style="color: red"></div>""")
#btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
gr.HTML("""
<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: 76%</div>
""")
clear = gr.ClearButton(link = "http://127.0.0.1:7865")
with gr.Tab("Batch Mode"):
with gr.Row():
model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
with gr.Row():
prompt_input = gr.Textbox(label="RELAVENCY", placeholder="Relavancy")
prompt_input = gr.Textbox(label="Diversity", placeholder="Diversity")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your email address", placeholder="Enter Your Email Address")
with gr.Row():
generate_button = gr.Button("Submit", variant="primary")
# Launch the Gradio app
demo.launch() |