Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
from huggingface_hub import model_info | |
import argparse | |
from copy import deepcopy | |
import inspect | |
from logging import warn | |
from pathlib import Path | |
import json | |
from tuned_lens.model_surgery import get_final_layer_norm, get_transformer_layers | |
from tuned_lens.load_artifacts import load_lens_artifacts | |
from tuned_lens.nn import TunedLens | |
from transformers.models.bloom.modeling_bloom import BloomBlock | |
from transformers import PreTrainedModel, AutoModelForCausalLM | |
from typing import Optional, Generator, Union | |
import torch as th | |
from tuned_lens.stats.distance import js_divergence | |
def instantiate_layer(model_config, layer_idx: int, model_type: str) -> th.nn.Module: | |
if model_type == "bloom": | |
from transformers.models.bloom.modeling_bloom import BloomBlock | |
return _BloomBlockWrapper(BloomBlock(model_config)) # type: ignore[arg-type] | |
if model_type == "gpt_neo": | |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoBlock | |
return GPTNeoBlock(model_config, layer_idx) | |
if model_type == "gpt_neox": | |
from transformers.models.gpt_neox.modeling_gpt_neox import ( | |
GPTNeoXLayer, | |
) | |
return GPTNeoXLayer(model_config) # type: ignore[arg-type] | |
if model_type == "gpt2": | |
from transformers.models.gpt2.modeling_gpt2 import GPT2Block | |
return GPT2Block(model_config, layer_idx) # type: ignore[arg-type] | |
if model_type == "opt": | |
from transformers.models.opt.modeling_opt import OPTDecoderLayer | |
return OPTDecoderLayer(model_config) # type: ignore[arg-type] | |
else: | |
raise ValueError(f"Unknown model type '{model_type}'") | |
def maybe_wrap(layer: th.nn.Module) -> th.nn.Module: | |
return _BloomBlockWrapper(layer) if isinstance(layer, BloomBlock) else layer | |
# Very annoying that we have to do this. See https://bit.ly/3XSQ7W6 for context on | |
# what we're doing here. | |
class _BloomBlockWrapper(th.nn.Module): | |
def __init__(self, block: BloomBlock): | |
super().__init__() | |
self.block = block | |
def forward(self, x: th.Tensor) -> th.Tensor: | |
from transformers.models.bloom.modeling_bloom import ( | |
BloomModel, | |
build_alibi_tensor, | |
) | |
batch_size, seq_len, _ = x.shape | |
dummy_mask = x.new_ones([batch_size, seq_len]) | |
# Causal mask isn't created inside the block itself, so we have to do it here. | |
# Weirdly _prepare_attn_mask doesn't depend on `self` at all but is still an | |
# instance method for some reason, so we pass `None` as the first argument. | |
causal_mask = BloomModel._prepare_attn_mask( | |
None, dummy_mask, (batch_size, seq_len), 0 # type: ignore[arg-type] | |
) | |
alibi = build_alibi_tensor(dummy_mask, self.block.num_heads, x.dtype) | |
h, *_ = self.block(x, alibi, causal_mask) | |
return h | |
class TunedLensOld(th.nn.Module): | |
"""A tuned lens for decoding hidden states into logits.""" | |
layer_norm: th.nn.LayerNorm | |
unembedding: th.nn.Linear | |
extra_layers: th.nn.Sequential | |
layer_translators: th.nn.ModuleList | |
def __init__( | |
self, | |
model: Optional[PreTrainedModel] = None, | |
*, | |
bias: bool = True, | |
extra_layers: int = 0, | |
include_input: bool = True, | |
reuse_unembedding: bool = True, | |
# Used when saving and loading the lens | |
model_config: Optional[dict] = None, | |
d_model: Optional[int] = None, | |
num_layers: Optional[int] = None, | |
vocab_size: Optional[int] = None, | |
): | |
"""Create a TunedLensOld. | |
Args: | |
model : A pertained model from the transformers library you wish to inspect. | |
bias : Whether to include a bias term in the translator layers. | |
extra_layers : The number of extra layers to apply to the hidden states | |
before decoding into logits. | |
include_input : Whether to include a lens that decodes the word embeddings. | |
reuse_unembedding : Weather to reuse the unembedding matrix from the model. | |
model_config : The config of the model. Used for saving and loading. | |
d_model : The models hidden size. Used for saving and loading. | |
num_layers : The number of layers in the model. Used for saving and loading. | |
vocab_size : The size of the vocabulary. Used for saving and loading. | |
Raises: | |
ValueError: if neither a model or d_model, num_layers, and vocab_size, | |
are provided. | |
""" | |
super().__init__() | |
self.extra_layers = th.nn.Sequential() | |
if ( | |
model | |
is None | |
== (d_model is None or num_layers is None or vocab_size is None) | |
): | |
raise ValueError( | |
"Must provide either a model or d_model, num_layers, and vocab_size" | |
) | |
# Initializing from scratch without a model | |
if not model: | |
assert d_model and num_layers and vocab_size | |
self.layer_norm = th.nn.LayerNorm(d_model) | |
self.unembedding = th.nn.Linear(d_model, vocab_size, bias=False) | |
# Use HuggingFace methods to get decoder layers | |
else: | |
assert not (d_model or num_layers or vocab_size) | |
d_model = model.config.hidden_size | |
num_layers = model.config.num_hidden_layers | |
vocab_size = model.config.vocab_size | |
assert isinstance(d_model, int) and isinstance(vocab_size, int) | |
model_config = model.config.to_dict() # type: ignore[F841] | |
# Currently we convert the decoder to full precision | |
self.unembedding = deepcopy(model.get_output_embeddings()).float() | |
if ln := get_final_layer_norm(model): | |
self.layer_norm = deepcopy(ln).float() | |
else: | |
self.layer_norm = th.nn.Identity() | |
if extra_layers: | |
_, layers = get_transformer_layers(model) | |
self.extra_layers.extend( | |
[maybe_wrap(layer) for layer in layers[-extra_layers:]] | |
) | |
# Save config for later | |
config_keys = set(inspect.getfullargspec(TunedLensOld).kwonlyargs) | |
self.config = {k: v for k, v in locals().items() if k in config_keys} | |
del model_config | |
# Try to prevent finetuning the decoder | |
assert d_model and num_layers | |
self.layer_norm.requires_grad_(False) | |
self.unembedding.requires_grad_(False) | |
out_features = d_model if reuse_unembedding else vocab_size | |
translator = th.nn.Linear(d_model, out_features, bias=bias) | |
if not reuse_unembedding: | |
translator.weight.data = self.unembedding.weight.data.clone() | |
translator.bias.data.zero_() | |
else: | |
translator.weight.data.zero_() | |
translator.bias.data.zero_() | |
self.add_module("input_translator", translator if include_input else None) | |
# Don't include the final layer | |
num_layers -= 1 | |
self.layer_translators = th.nn.ModuleList( | |
[deepcopy(translator) for _ in range(num_layers)] | |
) | |
def __getitem__(self, item: int) -> th.nn.Module: | |
"""Get the probe module at the given index.""" | |
if isinstance(self.input_translator, th.nn.Module): | |
if item == 0: | |
return self.input_translator | |
else: | |
item -= 1 | |
return self.layer_translators[item] | |
def __iter__(self) -> Generator[th.nn.Module, None, None]: | |
"""Get iterator over the translators within the lens.""" | |
if isinstance(self.input_translator, th.nn.Module): | |
yield self.input_translator | |
yield from self.layer_translators | |
def load(cls, resource_id: str, **kwargs) -> "TunedLensOld": | |
"""Load a tuned lens from a or hugging face hub. | |
Args: | |
resource_id : The path to the directory containing the config and checkpoint | |
or the name of the model on the hugging face hub. | |
**kwargs : Additional arguments to pass to torch.load. | |
Returns: | |
A TunedLensOld instance. | |
""" | |
config_path, ckpt_path = load_lens_artifacts(resource_id) | |
# Load config | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
# Load parameters | |
state = th.load(ckpt_path, **kwargs) | |
# Backwards compatibility we really need to stop renaming things | |
keys = list(state.keys()) | |
for key in keys: | |
for old_key in ["probe", "adapter"]: | |
if old_key in key: | |
warn( | |
f"Loading a checkpoint with a '{old_key}' key. " | |
"This is deprecated and may be removed in a future version. " | |
) | |
new_key = key.replace(old_key, "translator") | |
state[new_key] = state.pop(key) | |
# Drop unrecognized config keys | |
unrecognized = set(config) - set(inspect.getfullargspec(cls).kwonlyargs) | |
for key in unrecognized: | |
warn(f"Ignoring config key '{key}'") | |
del config[key] | |
lens = cls(**config) | |
if num_extras := config.get("extra_layers"): | |
# This is sort of a hack but AutoConfig doesn't appear to have a from_dict | |
# for some reason. | |
from transformers.models.auto import CONFIG_MAPPING | |
model_conf_dict = config.get("model_config") | |
del model_conf_dict["torch_dtype"] | |
assert model_conf_dict, "Need a 'model_config' entry to load extra layers" | |
model_type = model_conf_dict["model_type"] | |
config_cls = CONFIG_MAPPING[model_type] | |
model_config = config_cls.from_dict(model_conf_dict) | |
lens.extra_layers = th.nn.Sequential( | |
*[ | |
instantiate_layer( | |
model_config, model_config.num_hidden_layers - i - 1, model_type | |
) | |
for i in range(num_extras) | |
] | |
) | |
lens.load_state_dict(state) | |
return lens | |
def save( | |
self, | |
path: Union[Path, str], | |
ckpt: str = "params.pt", | |
config: str = "config.json", | |
) -> None: | |
"""Save the lens to a directory. | |
Args: | |
path : The path to the directory to save the lens to. | |
ckpt : The name of the checkpoint file to save the parameters to. | |
config : The name of the config file to save the config to. | |
""" | |
path = Path(path) | |
path.mkdir(exist_ok=True, parents=True) | |
th.save(self.state_dict(), path / ckpt) | |
with open(path / config, "w") as f: | |
json.dump(self.config, f) | |
def normalize_(self): | |
"""Canonicalize the transforms by centering their weights and biases.""" | |
for linear in self: | |
assert isinstance(linear, th.nn.Linear) | |
A, b = linear.weight.data, linear.bias.data | |
A -= A.mean(dim=0, keepdim=True) | |
b -= b.mean() | |
def transform_hidden(self, h: th.Tensor, idx: int) -> th.Tensor: | |
"""Transform hidden state from layer `idx`.""" | |
if not self.config["reuse_unembedding"]: | |
raise RuntimeError("TunedLensOld.transform_hidden requires reuse_unembedding") | |
# Note that we add the translator output residually, in contrast to the formula | |
# in the paper. By parametrizing it this way we ensure that weight decay | |
# regularizes the transform toward the identity, not the zero transformation. | |
return h + self[idx](h) | |
def to_logits(self, h: th.Tensor) -> th.Tensor: | |
"""Decode a hidden state into logits.""" | |
h = self.extra_layers(h) | |
while isinstance(h, tuple): | |
h, *_ = h | |
return self.unembedding(self.layer_norm(h)) | |
def forward(self, h: th.Tensor, idx: int) -> th.Tensor: | |
"""Transform and then decode the hidden states into logits.""" | |
# Sanity check to make sure we don't finetune the decoder | |
# if any(p.requires_grad for p in self.parameters(recurse=False)): | |
# raise RuntimeError("Make sure to freeze the decoder") | |
# We're learning a separate unembedding for each layer | |
if not self.config["reuse_unembedding"]: | |
h_ = self.layer_norm(h) | |
return self[idx](h_) | |
h = self.transform_hidden(h, idx) | |
return self.to_logits(h) | |
def __len__(self) -> int: | |
"""Return the number of layer translators in the lens.""" | |
N = len(self.layer_translators) | |
if self.input_translator: | |
N += 1 | |
return N | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default="gpt2") | |
parser.add_argument("--resource-id", type=str, default="gpt2") | |
parser.add_argument("--output-dir", type=str, default="lens/gpt2") | |
args = parser.parse_args() | |
model = AutoModelForCausalLM.from_pretrained(args.model) | |
revision = model_info(args.model).sha | |
model.eval() | |
model.requires_grad_(False) | |
device = th.device("cuda:0" if th.cuda.is_available() else "cpu") | |
tuned_lens_old = TunedLensOld.load(args.resource_id, map_location=device) | |
tuned_lens = TunedLens.init_from_model( | |
model, bias=tuned_lens_old.config['bias'], revision=revision | |
) | |
for i in range(len(tuned_lens_old)): | |
tuned_lens[i].load_state_dict(tuned_lens_old[i].state_dict()) | |
tuned_lens = tuned_lens.to(device) | |
tuned_lens_old = tuned_lens_old.to(device) | |
model = model.to(device) | |
# Fuzz the new lens against the old one's | |
with th.no_grad(): | |
for i in range(len(tuned_lens)): | |
for _ in range(10): | |
a = th.randn(1, 1, tuned_lens.config.d_model, device=device) | |
logits_new = tuned_lens(a, i) | |
logits_old = tuned_lens_old(a, i) | |
log_ps_new = logits_new.log_softmax(-1) | |
log_ps_old = logits_old.log_softmax(-1) | |
assert (th.allclose(log_ps_new, log_ps_old)) | |
print("js div", js_divergence(log_ps_new, log_ps_old)) | |
tuned_lens.to(th.device("cpu")).save(args.output_dir) | |