File size: 14,581 Bytes
e49cdfa
 
 
 
 
 
 
af69869
e49cdfa
 
dba1d6e
e49cdfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba1d6e
e49cdfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dc122
e49cdfa
 
b9dc122
dba1d6e
e49cdfa
 
 
b9dc122
e49cdfa
 
 
 
 
 
 
 
 
b9dc122
e49cdfa
 
 
 
 
 
 
ab69474
b9dc122
e49cdfa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python3
from huggingface_hub import model_info
import argparse
from copy import deepcopy
import inspect
from logging import warn
from pathlib import Path
from tqdm import tqdm
import json

from tuned_lens.model_surgery import get_final_norm, get_transformer_layers
from tuned_lens.load_artifacts import load_lens_artifacts
from tuned_lens.nn import TunedLens
from transformers.models.bloom.modeling_bloom import BloomBlock
from transformers import PreTrainedModel, AutoModelForCausalLM
from typing import Optional, Generator, Union
import torch as th

from tuned_lens.stats.distance import js_divergence


def instantiate_layer(model_config, layer_idx: int, model_type: str) -> th.nn.Module:
    if model_type == "bloom":
        from transformers.models.bloom.modeling_bloom import BloomBlock

        return _BloomBlockWrapper(BloomBlock(model_config))  # type: ignore[arg-type]
    if model_type == "gpt_neo":
        from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoBlock

        return GPTNeoBlock(model_config, layer_idx)
    if model_type == "gpt_neox":
        from transformers.models.gpt_neox.modeling_gpt_neox import (
            GPTNeoXLayer,
        )

        return GPTNeoXLayer(model_config)  # type: ignore[arg-type]
    if model_type == "gpt2":
        from transformers.models.gpt2.modeling_gpt2 import GPT2Block

        return GPT2Block(model_config, layer_idx)  # type: ignore[arg-type]
    if model_type == "opt":
        from transformers.models.opt.modeling_opt import OPTDecoderLayer

        return OPTDecoderLayer(model_config)  # type: ignore[arg-type]
    else:
        raise ValueError(f"Unknown model type '{model_type}'")


def maybe_wrap(layer: th.nn.Module) -> th.nn.Module:
    return _BloomBlockWrapper(layer) if isinstance(layer, BloomBlock) else layer


# Very annoying that we have to do this. See https://bit.ly/3XSQ7W6 for context on
# what we're doing here.
class _BloomBlockWrapper(th.nn.Module):
    def __init__(self, block: BloomBlock):
        super().__init__()
        self.block = block

    def forward(self, x: th.Tensor) -> th.Tensor:
        from transformers.models.bloom.modeling_bloom import (
            BloomModel,
            build_alibi_tensor,
        )

        batch_size, seq_len, _ = x.shape
        dummy_mask = x.new_ones([batch_size, seq_len])

        # Causal mask isn't created inside the block itself, so we have to do it here.
        # Weirdly _prepare_attn_mask doesn't depend on `self` at all but is still an
        # instance method for some reason, so we pass `None` as the first argument.
        causal_mask = BloomModel._prepare_attn_mask(
            None, dummy_mask, (batch_size, seq_len), 0  # type: ignore[arg-type]
        )
        alibi = build_alibi_tensor(dummy_mask, self.block.num_heads, x.dtype)
        h, *_ = self.block(x, alibi, causal_mask)
        return h


class TunedLensOld(th.nn.Module):
    """A tuned lens for decoding hidden states into logits."""

    layer_norm: th.nn.LayerNorm
    unembedding: th.nn.Linear
    extra_layers: th.nn.Sequential
    layer_translators: th.nn.ModuleList

    def __init__(
        self,
        model: Optional[PreTrainedModel] = None,
        *,
        bias: bool = True,
        extra_layers: int = 0,
        include_input: bool = True,
        reuse_unembedding: bool = True,
        # Used when saving and loading the lens
        model_config: Optional[dict] = None,
        d_model: Optional[int] = None,
        num_layers: Optional[int] = None,
        vocab_size: Optional[int] = None,
    ):
        """Create a TunedLensOld.

        Args:
            model : A pertained model from the transformers library you wish to inspect.
            bias : Whether to include a bias term in the translator layers.
            extra_layers : The number of extra layers to apply to the hidden states
                before decoding into logits.

            include_input : Whether to include a lens that decodes the word embeddings.
            reuse_unembedding : Weather to reuse the unembedding matrix from the model.
            model_config : The config of the model. Used for saving and loading.
            d_model : The models hidden size. Used for saving and loading.
            num_layers : The number of layers in the model. Used for saving and loading.
            vocab_size : The size of the vocabulary. Used for saving and loading.

        Raises:
            ValueError: if neither a model or d_model, num_layers, and vocab_size,
                are provided.
        """
        super().__init__()

        self.extra_layers = th.nn.Sequential()

        if (
            model
            is None
            == (d_model is None or num_layers is None or vocab_size is None)
        ):
            raise ValueError(
                "Must provide either a model or d_model, num_layers, and vocab_size"
            )

        # Initializing from scratch without a model
        if not model:
            assert d_model and num_layers and vocab_size
            self.layer_norm = th.nn.LayerNorm(d_model)
            self.unembedding = th.nn.Linear(d_model, vocab_size, bias=False)

        # Use HuggingFace methods to get decoder layers
        else:
            assert not (d_model or num_layers or vocab_size)
            d_model = model.config.hidden_size
            num_layers = model.config.num_hidden_layers
            vocab_size = model.config.vocab_size
            assert isinstance(d_model, int) and isinstance(vocab_size, int)

            model_config = model.config.to_dict()  # type: ignore[F841]

            # Currently we convert the decoder to full precision
            self.unembedding = deepcopy(model.get_output_embeddings()).float()
            if ln := get_final_norm(model):
                self.layer_norm = deepcopy(ln).float()
            else:
                self.layer_norm = th.nn.Identity()

            if extra_layers:
                _, layers = get_transformer_layers(model)
                self.extra_layers.extend(
                    [maybe_wrap(layer) for layer in layers[-extra_layers:]]
                )

        # Save config for later
        config_keys = set(inspect.getfullargspec(TunedLensOld).kwonlyargs)
        self.config = {k: v for k, v in locals().items() if k in config_keys}
        del model_config

        # Try to prevent finetuning the decoder
        assert d_model and num_layers
        self.layer_norm.requires_grad_(False)
        self.unembedding.requires_grad_(False)

        out_features = d_model if reuse_unembedding else vocab_size
        translator = th.nn.Linear(d_model, out_features, bias=bias)
        if not reuse_unembedding:
            translator.weight.data = self.unembedding.weight.data.clone()
            translator.bias.data.zero_()
        else:
            translator.weight.data.zero_()
            translator.bias.data.zero_()

        self.add_module("input_translator", translator if include_input else None)
        # Don't include the final layer
        num_layers -= 1

        self.layer_translators = th.nn.ModuleList(
            [deepcopy(translator) for _ in range(num_layers)]
        )

    def __getitem__(self, item: int) -> th.nn.Module:
        """Get the probe module at the given index."""
        if isinstance(self.input_translator, th.nn.Module):
            if item == 0:
                return self.input_translator
            else:
                item -= 1

        return self.layer_translators[item]

    def __iter__(self) -> Generator[th.nn.Module, None, None]:
        """Get iterator over the translators within the lens."""
        if isinstance(self.input_translator, th.nn.Module):
            yield self.input_translator

        yield from self.layer_translators

    @classmethod
    def load(cls, resource_id: str, **kwargs) -> "TunedLensOld":
        """Load a tuned lens from a or hugging face hub.

        Args:
            resource_id : The path to the directory containing the config and checkpoint
                or the name of the model on the hugging face hub.
            **kwargs : Additional arguments to pass to torch.load.

        Returns:
            A TunedLensOld instance.
        """
        config_path, ckpt_path = load_lens_artifacts(resource_id)
        # Load config
        with open(config_path, "r") as f:
            config = json.load(f)

        # Load parameters
        state = th.load(ckpt_path, **kwargs)

        # Backwards compatibility we really need to stop renaming things
        keys = list(state.keys())
        for key in keys:
            for old_key in ["probe", "adapter"]:
                if old_key in key:
                    warn(
                        f"Loading a checkpoint with a '{old_key}' key. "
                        "This is deprecated and may be removed in a future version. "
                    )
                    new_key = key.replace(old_key, "translator")
                    state[new_key] = state.pop(key)

        # Drop unrecognized config keys
        unrecognized = set(config) - set(inspect.getfullargspec(cls).kwonlyargs)
        for key in unrecognized:
            warn(f"Ignoring config key '{key}'")
            del config[key]

        lens = cls(**config)

        if num_extras := config.get("extra_layers"):
            # This is sort of a hack but AutoConfig doesn't appear to have a from_dict
            # for some reason.
            from transformers.models.auto import CONFIG_MAPPING

            model_conf_dict = config.get("model_config")
            del model_conf_dict["torch_dtype"]
            assert model_conf_dict, "Need a 'model_config' entry to load extra layers"

            model_type = model_conf_dict["model_type"]
            config_cls = CONFIG_MAPPING[model_type]
            model_config = config_cls.from_dict(model_conf_dict)

            lens.extra_layers = th.nn.Sequential(
                *[
                    instantiate_layer(
                        model_config, model_config.num_hidden_layers - i - 1, model_type
                    )
                    for i in range(num_extras)
                ]
            )

        lens.load_state_dict(state)
        return lens

    def save(
        self,
        path: Union[Path, str],
        ckpt: str = "params.pt",
        config: str = "config.json",
    ) -> None:
        """Save the lens to a directory.

        Args:
            path : The path to the directory to save the lens to.
            ckpt : The name of the checkpoint file to save the parameters to.
            config : The name of the config file to save the config to.
        """
        path = Path(path)
        path.mkdir(exist_ok=True, parents=True)
        th.save(self.state_dict(), path / ckpt)

        with open(path / config, "w") as f:
            json.dump(self.config, f)

    def normalize_(self):
        """Canonicalize the transforms by centering their weights and biases."""
        for linear in self:
            assert isinstance(linear, th.nn.Linear)

            A, b = linear.weight.data, linear.bias.data
            A -= A.mean(dim=0, keepdim=True)
            b -= b.mean()

    def transform_hidden(self, h: th.Tensor, idx: int) -> th.Tensor:
        """Transform hidden state from layer `idx`."""
        if not self.config["reuse_unembedding"]:
            raise RuntimeError("TunedLensOld.transform_hidden requires reuse_unembedding")

        # Note that we add the translator output residually, in contrast to the formula
        # in the paper. By parametrizing it this way we ensure that weight decay
        # regularizes the transform toward the identity, not the zero transformation.
        return h + self[idx](h)

    def to_logits(self, h: th.Tensor) -> th.Tensor:
        """Decode a hidden state into logits."""
        h = self.extra_layers(h)
        while isinstance(h, tuple):
            h, *_ = h

        return self.unembedding(self.layer_norm(h))

    def forward(self, h: th.Tensor, idx: int) -> th.Tensor:
        """Transform and then decode the hidden states into logits."""
        # Sanity check to make sure we don't finetune the decoder
        # if any(p.requires_grad for p in self.parameters(recurse=False)):
        #     raise RuntimeError("Make sure to freeze the decoder")

        # We're learning a separate unembedding for each layer
        if not self.config["reuse_unembedding"]:
            h_ = self.layer_norm(h)
            return self[idx](h_)

        h = self.transform_hidden(h, idx)
        return self.to_logits(h)

    def __len__(self) -> int:
        """Return the number of layer translators in the lens."""
        N = len(self.layer_translators)
        if self.input_translator:
            N += 1

        return N


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="gpt2")
    parser.add_argument("--resource-id", type=str, default="gpt2")
    parser.add_argument("--output-dir", type=str, default="lens/gpt2")
    args = parser.parse_args()

    model = AutoModelForCausalLM.from_pretrained(args.model)
    revision = model_info(args.model).sha
    model.eval()
    model.requires_grad_(False)

    device = th.device("cuda:0" if th.cuda.is_available() else "cpu")

    print("Loading old lens")
    tuned_lens_old = TunedLensOld.load(args.resource_id, map_location=device)

    print("Initializing new lens")
    tuned_lens = TunedLens.from_model(
        model, bias=tuned_lens_old.config['bias'], revision=revision
    )

    for i in tqdm(range(len(tuned_lens_old)), desc="Copying parameters"):
        tuned_lens[i].load_state_dict(tuned_lens_old[i].state_dict())


    tuned_lens = tuned_lens.to(device)
    tuned_lens_old = tuned_lens_old.to(device)
    model = model.to(device)

    # Fuzz the new lens against the old one's
    with th.no_grad():
        for i in tqdm(range(len(tuned_lens)), desc="Fuzzing layers"):
            for _ in range(10):
                a = th.randn(1, 1, tuned_lens.config.d_model, device=device)
                logits_new = tuned_lens(a, i)
                logits_old = tuned_lens_old(a, i)
                log_ps_new = logits_new.log_softmax(-1)
                log_ps_old = logits_old.log_softmax(-1)
                print("js div", js_divergence(log_ps_new, log_ps_old))
                assert (th.allclose(log_ps_new, log_ps_old, atol=1e-7)), (log_ps_new - log_ps_old).abs().max()
    print("Saving new lens to", args.output_dir)
    tuned_lens.to(th.device("cpu")).save(args.output_dir)