AlhitawiMohammed22
commited on
Commit
•
f959a75
1
Parent(s):
d9636b6
create gradio app CER,WER&Acc
Browse files- app.py +5 -0
- eval_accuracy.py +0 -0
- eval_cer.py +143 -0
- eval_wer.py +0 -0
- requirements.txt +2 -0
- test_accuracy.py +0 -0
- test_eval_cer.py +96 -0
- test_eval_wer.py +0 -0
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
module = evaluate.load("cer")
|
5 |
+
launch_gradio_widget(module)
|
eval_accuracy.py
ADDED
File without changes
|
eval_cer.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Character Error Ratio (CER) metric. """
|
2 |
+
from typing import List
|
3 |
+
import datasets, evaluate , jiwer
|
4 |
+
import jiwer.transforms as tr
|
5 |
+
from datasets.config import PY_VERSION
|
6 |
+
from packaging import version
|
7 |
+
|
8 |
+
|
9 |
+
if PY_VERSION < version.parse("3.8"):
|
10 |
+
import importlib_metadata
|
11 |
+
else:
|
12 |
+
import importlib.metadata as importlib_metadata
|
13 |
+
|
14 |
+
SENTENCE_DELIMITER = ""
|
15 |
+
|
16 |
+
if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"):
|
17 |
+
|
18 |
+
class SentencesToListOfCharacters(tr.AbstractTransform):
|
19 |
+
def __init__(self, sentence_delimiter: str = " "):
|
20 |
+
self.sentence_delimiter = sentence_delimiter
|
21 |
+
|
22 |
+
def process_string(self, s: str):
|
23 |
+
return list(s)
|
24 |
+
|
25 |
+
def process_list(self, inp: List[str]):
|
26 |
+
chars = []
|
27 |
+
for sent_idx, sentence in enumerate(inp):
|
28 |
+
chars.extend(self.process_string(sentence))
|
29 |
+
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(inp) - 1:
|
30 |
+
chars.append(self.sentence_delimiter)
|
31 |
+
return chars
|
32 |
+
|
33 |
+
cer_transform = tr.Compose(
|
34 |
+
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
|
35 |
+
)
|
36 |
+
else:
|
37 |
+
cer_transform = tr.Compose(
|
38 |
+
[
|
39 |
+
tr.RemoveMultipleSpaces(),
|
40 |
+
tr.Strip(),
|
41 |
+
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
|
42 |
+
tr.ReduceToListOfListOfChars(),
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
_CITATION = """\
|
48 |
+
@inproceedings{inproceedings,
|
49 |
+
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
|
50 |
+
year = {2004},
|
51 |
+
month = {01},
|
52 |
+
pages = {},
|
53 |
+
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
_DESCRIPTION = """\
|
58 |
+
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
|
59 |
+
|
60 |
+
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
|
61 |
+
|
62 |
+
Character error rate can be computed as:
|
63 |
+
|
64 |
+
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
|
65 |
+
|
66 |
+
where
|
67 |
+
|
68 |
+
S is the number of substitutions,
|
69 |
+
D is the number of deletions,
|
70 |
+
I is the number of insertions,
|
71 |
+
C is the number of correct characters,
|
72 |
+
N is the number of characters in the reference (N=S+D+C).
|
73 |
+
|
74 |
+
CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
|
75 |
+
performance of the ASR system with a CER of 0 being a perfect score.
|
76 |
+
"""
|
77 |
+
|
78 |
+
_KWARGS_DESCRIPTION = """
|
79 |
+
Computes CER score of transcribed segments against references.
|
80 |
+
Args:
|
81 |
+
references: list of references for each speech input.
|
82 |
+
predictions: list of transcribtions to score.
|
83 |
+
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
|
84 |
+
Returns:
|
85 |
+
(float): the character error rate
|
86 |
+
|
87 |
+
Examples for Hungarain Languge:
|
88 |
+
>>> # Colab usage
|
89 |
+
>>> !pip install evaluate jiwer
|
90 |
+
>>> import evaluate
|
91 |
+
>>> from evaluate import load
|
92 |
+
|
93 |
+
>>> predictions = ["ez a jóslat", "van egy másik minta is"]
|
94 |
+
>>> references = ["ez a hivatkozás", "van még egy"]
|
95 |
+
>>> cer = evaluate.load("cer")
|
96 |
+
>>> cer_score = cer.compute(predictions=predictions, references=references)
|
97 |
+
>>> print(cer_score)
|
98 |
+
>>> 0.9615384615384616
|
99 |
+
"""
|
100 |
+
|
101 |
+
|
102 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
103 |
+
class CER(evaluate.Metric):
|
104 |
+
def _info(self):
|
105 |
+
return evaluate.MetricInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
citation=_CITATION,
|
108 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
109 |
+
features=datasets.Features(
|
110 |
+
{
|
111 |
+
"predictions": datasets.Value("string", id="sequence"),
|
112 |
+
"references": datasets.Value("string", id="sequence"),
|
113 |
+
}
|
114 |
+
),
|
115 |
+
codebase_urls=["https://github.com/jitsi/jiwer/"],
|
116 |
+
reference_urls=[
|
117 |
+
"https://en.wikipedia.org/wiki/Word_error_rate",
|
118 |
+
"https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates",
|
119 |
+
],
|
120 |
+
)
|
121 |
+
|
122 |
+
def _compute(self, predictions, references, concatenate_texts=False):
|
123 |
+
if concatenate_texts:
|
124 |
+
return jiwer.compute_measures(
|
125 |
+
references,
|
126 |
+
predictions,
|
127 |
+
truth_transform=cer_transform,
|
128 |
+
hypothesis_transform=cer_transform,
|
129 |
+
)["wer"]
|
130 |
+
|
131 |
+
incorrect = 0
|
132 |
+
total = 0
|
133 |
+
for prediction, reference in zip(predictions, references):
|
134 |
+
measures = jiwer.compute_measures(
|
135 |
+
reference,
|
136 |
+
prediction,
|
137 |
+
truth_transform=cer_transform,
|
138 |
+
hypothesis_transform=cer_transform,
|
139 |
+
)
|
140 |
+
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
|
141 |
+
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
|
142 |
+
|
143 |
+
return incorrect / total
|
eval_wer.py
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@8b9373dc8693ffe0244a52551ac5573cffa503aa
|
2 |
+
jiwer
|
test_accuracy.py
ADDED
File without changes
|
test_eval_cer.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from cer import CER
|
3 |
+
|
4 |
+
cer = CER()
|
5 |
+
class TestCER(unittest.TestCase):
|
6 |
+
def test_cer_case_sensitive(self):
|
7 |
+
refs = ["Magyar Országgyűlés"]
|
8 |
+
preds = ["Magyar Országgyűlés"]
|
9 |
+
# S = 2, D = 0, I = 0, N = 11, CER = 2 / 11
|
10 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
11 |
+
self.assertTrue(abs(char_error_rate - 0.1818181818) < 1e-6)
|
12 |
+
|
13 |
+
def test_cer_whitespace(self):
|
14 |
+
refs = ["Farkasok voltak"]
|
15 |
+
preds = ["Farkasokvoltak"]
|
16 |
+
# S = , D = , I = 1, N = , CER = I / N
|
17 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
18 |
+
self.assertTrue(abs(char_error_rate - 0.) < 1e-6)
|
19 |
+
|
20 |
+
refs = ["Farkasokvoltak"]
|
21 |
+
preds = ["Ferkasok voltak"]
|
22 |
+
# S = , D = 1, I = 0, N = 14, CER =
|
23 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
24 |
+
self.assertTrue(abs(char_error_rate - 0.) < 1e-6)
|
25 |
+
|
26 |
+
# consecutive whitespaces case 1
|
27 |
+
refs = ["Farkasok voltak"]
|
28 |
+
preds = ["Farkasok voltak"]
|
29 |
+
# S = 0, D = 0, I = 0, N = , CER = 0
|
30 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
31 |
+
self.assertTrue(abs(char_error_rate - 0.0) < 1e-6)
|
32 |
+
|
33 |
+
# consecutive whitespaces case 2
|
34 |
+
refs = ["Farkasok voltak"]
|
35 |
+
preds = ["Farkasok voltak"]
|
36 |
+
# S = 0, D = 0, I = 0, N = ?, CER = 0
|
37 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
38 |
+
self.assertTrue(abs(char_error_rate - 0.0) < 1e-6)
|
39 |
+
|
40 |
+
def test_cer_sub(self):
|
41 |
+
refs = ["Magyar"]
|
42 |
+
preds = ["Megyar"]
|
43 |
+
# S = 1, D = 0, I = 0, N = 6, CER = 0.125
|
44 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
45 |
+
self.assertTrue(abs(char_error_rate - 0.125) < 1e-6)
|
46 |
+
|
47 |
+
def test_cer_del(self):
|
48 |
+
refs = ["Farkasokvoltak"]
|
49 |
+
preds = ["Farkasokavoltak"]
|
50 |
+
# S = 0, D = 1, I = 0, N = 14, CER = 0.
|
51 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
52 |
+
self.assertTrue(abs(char_error_rate - 0.) < 1e-6)
|
53 |
+
|
54 |
+
def test_cer_insert(self):
|
55 |
+
refs = ["Farkasokvoltak"]
|
56 |
+
preds = ["Farkasokoltak"]
|
57 |
+
# S = 0, D = 0, I = 1, N = 14, CER = 0.
|
58 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
59 |
+
self.assertTrue(abs(char_error_rate - 0.) < 1e-6)
|
60 |
+
|
61 |
+
def test_cer_equal(self):
|
62 |
+
refs = ["Magyar"]
|
63 |
+
char_error_rate = cer.compute(predictions=refs, references=refs)
|
64 |
+
self.assertEqual(char_error_rate, 0.0)
|
65 |
+
|
66 |
+
def test_cer_list_of_seqs(self):
|
67 |
+
# ['Eötvös Loránd University','I love my daughter']
|
68 |
+
refs = ["Eötvös Loránd Tudományegyetem", "szeretem a lányom"]
|
69 |
+
char_error_rate = cer.compute(predictions=refs, references=refs)
|
70 |
+
self.assertEqual(char_error_rate, 0.0)
|
71 |
+
|
72 |
+
refs = ["diák", "Az arab nyelvet könnyű megtanulni!", "autó"]
|
73 |
+
preds = ["dxák", "Az arab nyelvet könnyű megtanulni!", "autó"]
|
74 |
+
# S = 1, D = 0, I = 0, N = 28, CER = 1 / 42
|
75 |
+
char_error_rate = cer.compute(predictions=preds, references=refs)
|
76 |
+
self.assertTrue(abs(char_error_rate - 0.0238095238) < 1e-6)
|
77 |
+
|
78 |
+
def test_correlated_sentences(self):
|
79 |
+
# Learn artificial intelligence to secure your future
|
80 |
+
# Tanuljon mesterséges intelligenciát, hogy biztosítsa jövőjét
|
81 |
+
refs = ["Tanuljon mesterséges intelligenciát,", " hogy biztosítsa jövőjét"]
|
82 |
+
preds = ["Tanuljon mesterséges intelligenciát, hogy", " biztosítsa jövőjét"]
|
83 |
+
# S = 0, D = 0, I = 1, N = 28, CER = 2 / 60
|
84 |
+
# whitespace at the front of " biztosítsa jövőjét" will be strip during preporcessing
|
85 |
+
# so need to insert 2 whitespaces
|
86 |
+
char_error_rate = cer.compute(predictions=preds, references=refs, concatenate_texts=True)
|
87 |
+
self.assertTrue(abs(char_error_rate - 0.03333333333) < 1e-6)
|
88 |
+
|
89 |
+
def test_cer_empty(self):
|
90 |
+
refs = [""]
|
91 |
+
preds = ["tök mindegy"]
|
92 |
+
with self.assertRaises(ValueError):
|
93 |
+
cer.compute(predictions=preds, references=refs)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
unittest.main()
|
test_eval_wer.py
ADDED
File without changes
|