Spaces:
Sleeping
Sleeping
File size: 1,586 Bytes
f1c69e7 a0e0f92 d42d32c a0e0f92 f586823 a0e0f92 2804f3c a0e0f92 2804f3c 869a9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from fastapi import FastAPI, Query, Request
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", headers={"X-use-cache": "false"})
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 16384
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(item: Item):
temperature = float(item.temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
@app.post("/chat/completions")
async def generate_text(item: Item):
return {"response": generate(item)}
@app.get("/ping")
async def ping(request: Request):
return "pong"
|