File size: 5,059 Bytes
5ddef29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/job", params)
return response.json()
def transform(self, params):
response = self._post(f"{self.base}/transform", params)
return response.json()
def controlnet(self, params):
response = self._post(f"{self.base}/controlnet", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/models/list")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale):
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale
})
job = prodia_client.wait(result)
return job["imageUrl"]
css = """
#generate {
height: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Tab("txt2img"):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
with gr.Column(equal_height=True):
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=1):
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
model = gr.Dropdown(interactive=True,value="v1-5-pruned-emaonly.safetensors [d7049739]", show_label=False, choices=prodia_client.list_models())
sampler = gr.Dropdown(value="Euler a", show_label=False, choices=[
"Euler",
"Euler a",
"LMS",
"Heun",
"DPM2",
"DPM2 a",
"DPM++ 2S a",
"DPM++ 2M",
"DPM++ SDE",
"DPM fast",
"DPM adaptive",
"LMS Karras",
"DPM2 Karras",
"DPM2 a Karras",
"DPM++ 2S a Karras",
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DDIM",
"PLMS",
])
with gr.Column(scale=1):
steps = gr.Slider(label="Steps", miniumum=1, maximum=50, value=25)
cfg_scale = gr.Slider(label="CFG Scale", miniumum=1, maximum=20, value=7)
with gr.Column(scale=1):
image_output = gr.Image()
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale], outputs=image_output)
demo.launch()
|