Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, | |
kaiming_init) | |
from mmcv.runner import load_checkpoint | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmdet.utils import get_root_logger | |
from ..builder import BACKBONES | |
from .resnet import Bottleneck as _Bottleneck | |
from .resnet import ResNet | |
class Bottle2neck(_Bottleneck): | |
expansion = 4 | |
def __init__(self, | |
inplanes, | |
planes, | |
scales=4, | |
base_width=26, | |
base_channels=64, | |
stage_type='normal', | |
**kwargs): | |
"""Bottle2neck block for Res2Net. | |
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if | |
it is "caffe", the stride-two layer is the first 1x1 conv layer. | |
""" | |
super(Bottle2neck, self).__init__(inplanes, planes, **kwargs) | |
assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.' | |
width = int(math.floor(self.planes * (base_width / base_channels))) | |
self.norm1_name, norm1 = build_norm_layer( | |
self.norm_cfg, width * scales, postfix=1) | |
self.norm3_name, norm3 = build_norm_layer( | |
self.norm_cfg, self.planes * self.expansion, postfix=3) | |
self.conv1 = build_conv_layer( | |
self.conv_cfg, | |
self.inplanes, | |
width * scales, | |
kernel_size=1, | |
stride=self.conv1_stride, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
if stage_type == 'stage' and self.conv2_stride != 1: | |
self.pool = nn.AvgPool2d( | |
kernel_size=3, stride=self.conv2_stride, padding=1) | |
convs = [] | |
bns = [] | |
fallback_on_stride = False | |
if self.with_dcn: | |
fallback_on_stride = self.dcn.pop('fallback_on_stride', False) | |
if not self.with_dcn or fallback_on_stride: | |
for i in range(scales - 1): | |
convs.append( | |
build_conv_layer( | |
self.conv_cfg, | |
width, | |
width, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=self.dilation, | |
dilation=self.dilation, | |
bias=False)) | |
bns.append( | |
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
else: | |
assert self.conv_cfg is None, 'conv_cfg must be None for DCN' | |
for i in range(scales - 1): | |
convs.append( | |
build_conv_layer( | |
self.dcn, | |
width, | |
width, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=self.dilation, | |
dilation=self.dilation, | |
bias=False)) | |
bns.append( | |
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
self.conv3 = build_conv_layer( | |
self.conv_cfg, | |
width * scales, | |
self.planes * self.expansion, | |
kernel_size=1, | |
bias=False) | |
self.add_module(self.norm3_name, norm3) | |
self.stage_type = stage_type | |
self.scales = scales | |
self.width = width | |
delattr(self, 'conv2') | |
delattr(self, self.norm2_name) | |
def forward(self, x): | |
"""Forward function.""" | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv1_plugin_names) | |
spx = torch.split(out, self.width, 1) | |
sp = self.convs[0](spx[0].contiguous()) | |
sp = self.relu(self.bns[0](sp)) | |
out = sp | |
for i in range(1, self.scales - 1): | |
if self.stage_type == 'stage': | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
sp = self.convs[i](sp.contiguous()) | |
sp = self.relu(self.bns[i](sp)) | |
out = torch.cat((out, sp), 1) | |
if self.stage_type == 'normal' or self.conv2_stride == 1: | |
out = torch.cat((out, spx[self.scales - 1]), 1) | |
elif self.stage_type == 'stage': | |
out = torch.cat((out, self.pool(spx[self.scales - 1])), 1) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv2_plugin_names) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv3_plugin_names) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
class Res2Layer(nn.Sequential): | |
"""Res2Layer to build Res2Net style backbone. | |
Args: | |
block (nn.Module): block used to build ResLayer. | |
inplanes (int): inplanes of block. | |
planes (int): planes of block. | |
num_blocks (int): number of blocks. | |
stride (int): stride of the first block. Default: 1 | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottle2neck. Default: False | |
conv_cfg (dict): dictionary to construct and config conv layer. | |
Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
scales (int): Scales used in Res2Net. Default: 4 | |
base_width (int): Basic width of each scale. Default: 26 | |
""" | |
def __init__(self, | |
block, | |
inplanes, | |
planes, | |
num_blocks, | |
stride=1, | |
avg_down=True, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
scales=4, | |
base_width=26, | |
**kwargs): | |
self.block = block | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.AvgPool2d( | |
kernel_size=stride, | |
stride=stride, | |
ceil_mode=True, | |
count_include_pad=False), | |
build_conv_layer( | |
conv_cfg, | |
inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=1, | |
bias=False), | |
build_norm_layer(norm_cfg, planes * block.expansion)[1], | |
) | |
layers = [] | |
layers.append( | |
block( | |
inplanes=inplanes, | |
planes=planes, | |
stride=stride, | |
downsample=downsample, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
scales=scales, | |
base_width=base_width, | |
stage_type='stage', | |
**kwargs)) | |
inplanes = planes * block.expansion | |
for i in range(1, num_blocks): | |
layers.append( | |
block( | |
inplanes=inplanes, | |
planes=planes, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
scales=scales, | |
base_width=base_width, | |
**kwargs)) | |
super(Res2Layer, self).__init__(*layers) | |
class Res2Net(ResNet): | |
"""Res2Net backbone. | |
Args: | |
scales (int): Scales used in Res2Net. Default: 4 | |
base_width (int): Basic width of each scale. Default: 26 | |
depth (int): Depth of res2net, from {50, 101, 152}. | |
in_channels (int): Number of input image channels. Default: 3. | |
num_stages (int): Res2net stages. Default: 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
dilations (Sequence[int]): Dilation of each stage. | |
out_indices (Sequence[int]): Output from which stages. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottle2neck. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- position (str, required): Position inside block to insert | |
plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
zero_init_residual (bool): Whether to use zero init for last norm layer | |
in resblocks to let them behave as identity. | |
Example: | |
>>> from mmdet.models import Res2Net | |
>>> import torch | |
>>> self = Res2Net(depth=50, scales=4, base_width=26) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 32, 32) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
(1, 256, 8, 8) | |
(1, 512, 4, 4) | |
(1, 1024, 2, 2) | |
(1, 2048, 1, 1) | |
""" | |
arch_settings = { | |
50: (Bottle2neck, (3, 4, 6, 3)), | |
101: (Bottle2neck, (3, 4, 23, 3)), | |
152: (Bottle2neck, (3, 8, 36, 3)) | |
} | |
def __init__(self, | |
scales=4, | |
base_width=26, | |
style='pytorch', | |
deep_stem=True, | |
avg_down=True, | |
**kwargs): | |
self.scales = scales | |
self.base_width = base_width | |
super(Res2Net, self).__init__( | |
style='pytorch', deep_stem=True, avg_down=True, **kwargs) | |
def make_res_layer(self, **kwargs): | |
return Res2Layer( | |
scales=self.scales, | |
base_width=self.base_width, | |
base_channels=self.base_channels, | |
**kwargs) | |
def init_weights(self, pretrained=None): | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
if isinstance(pretrained, str): | |
logger = get_root_logger() | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
constant_init(m, 1) | |
if self.dcn is not None: | |
for m in self.modules(): | |
if isinstance(m, Bottle2neck): | |
# dcn in Res2Net bottle2neck is in ModuleList | |
for n in m.convs: | |
if hasattr(n, 'conv_offset'): | |
constant_init(n.conv_offset, 0) | |
if self.zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottle2neck): | |
constant_init(m.norm3, 0) | |
else: | |
raise TypeError('pretrained must be a str or None') | |