Spaces:
Runtime error
Runtime error
import random | |
import warnings | |
import numpy as np | |
import torch | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import (HOOKS, DistSamplerSeedHook, EpochBasedRunner, | |
Fp16OptimizerHook, OptimizerHook, build_optimizer, | |
build_runner) | |
from mmcv.utils import build_from_cfg | |
from mmdet.core import DistEvalHook, EvalHook | |
from mmdet.datasets import (build_dataloader, build_dataset, | |
replace_ImageToTensor) | |
from mmdet.utils import get_root_logger | |
from mmcv_custom.runner import EpochBasedRunnerAmp | |
try: | |
import apex | |
except: | |
print('apex is not installed') | |
def set_random_seed(seed, deterministic=False): | |
"""Set random seed. | |
Args: | |
seed (int): Seed to be used. | |
deterministic (bool): Whether to set the deterministic option for | |
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` | |
to True and `torch.backends.cudnn.benchmark` to False. | |
Default: False. | |
""" | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if deterministic: | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def train_detector(model, | |
dataset, | |
cfg, | |
distributed=False, | |
validate=False, | |
timestamp=None, | |
meta=None): | |
logger = get_root_logger(cfg.log_level) | |
# prepare data loaders | |
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] | |
if 'imgs_per_gpu' in cfg.data: | |
logger.warning('"imgs_per_gpu" is deprecated in MMDet V2.0. ' | |
'Please use "samples_per_gpu" instead') | |
if 'samples_per_gpu' in cfg.data: | |
logger.warning( | |
f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' | |
f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' | |
f'={cfg.data.imgs_per_gpu} is used in this experiments') | |
else: | |
logger.warning( | |
'Automatically set "samples_per_gpu"="imgs_per_gpu"=' | |
f'{cfg.data.imgs_per_gpu} in this experiments') | |
cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu | |
data_loaders = [ | |
build_dataloader( | |
ds, | |
cfg.data.samples_per_gpu, | |
cfg.data.workers_per_gpu, | |
# cfg.gpus will be ignored if distributed | |
len(cfg.gpu_ids), | |
dist=distributed, | |
seed=cfg.seed) for ds in dataset | |
] | |
# build optimizer | |
optimizer = build_optimizer(model, cfg.optimizer) | |
# use apex fp16 optimizer | |
if cfg.optimizer_config.get("type", None) and cfg.optimizer_config["type"] == "DistOptimizerHook": | |
if cfg.optimizer_config.get("use_fp16", False): | |
model, optimizer = apex.amp.initialize( | |
model.cuda(), optimizer, opt_level="O1") | |
for m in model.modules(): | |
if hasattr(m, "fp16_enabled"): | |
m.fp16_enabled = True | |
# put model on gpus | |
if distributed: | |
find_unused_parameters = cfg.get('find_unused_parameters', False) | |
# Sets the `find_unused_parameters` parameter in | |
# torch.nn.parallel.DistributedDataParallel | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False, | |
find_unused_parameters=find_unused_parameters) | |
else: | |
model = MMDataParallel( | |
model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) | |
if 'runner' not in cfg: | |
cfg.runner = { | |
'type': 'EpochBasedRunner', | |
'max_epochs': cfg.total_epochs | |
} | |
warnings.warn( | |
'config is now expected to have a `runner` section, ' | |
'please set `runner` in your config.', UserWarning) | |
else: | |
if 'total_epochs' in cfg: | |
assert cfg.total_epochs == cfg.runner.max_epochs | |
# build runner | |
runner = build_runner( | |
cfg.runner, | |
default_args=dict( | |
model=model, | |
optimizer=optimizer, | |
work_dir=cfg.work_dir, | |
logger=logger, | |
meta=meta)) | |
# an ugly workaround to make .log and .log.json filenames the same | |
runner.timestamp = timestamp | |
# fp16 setting | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
optimizer_config = Fp16OptimizerHook( | |
**cfg.optimizer_config, **fp16_cfg, distributed=distributed) | |
elif distributed and 'type' not in cfg.optimizer_config: | |
optimizer_config = OptimizerHook(**cfg.optimizer_config) | |
else: | |
optimizer_config = cfg.optimizer_config | |
# register hooks | |
runner.register_training_hooks(cfg.lr_config, optimizer_config, | |
cfg.checkpoint_config, cfg.log_config, | |
cfg.get('momentum_config', None)) | |
if distributed: | |
if isinstance(runner, EpochBasedRunner): | |
runner.register_hook(DistSamplerSeedHook()) | |
# register eval hooks | |
if validate: | |
# Support batch_size > 1 in validation | |
val_samples_per_gpu = cfg.data.val.pop('samples_per_gpu', 1) | |
if val_samples_per_gpu > 1: | |
# Replace 'ImageToTensor' to 'DefaultFormatBundle' | |
cfg.data.val.pipeline = replace_ImageToTensor( | |
cfg.data.val.pipeline) | |
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) | |
val_dataloader = build_dataloader( | |
val_dataset, | |
samples_per_gpu=val_samples_per_gpu, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=distributed, | |
shuffle=False) | |
eval_cfg = cfg.get('evaluation', {}) | |
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' | |
eval_hook = DistEvalHook if distributed else EvalHook | |
runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) | |
# user-defined hooks | |
if cfg.get('custom_hooks', None): | |
custom_hooks = cfg.custom_hooks | |
assert isinstance(custom_hooks, list), \ | |
f'custom_hooks expect list type, but got {type(custom_hooks)}' | |
for hook_cfg in cfg.custom_hooks: | |
assert isinstance(hook_cfg, dict), \ | |
'Each item in custom_hooks expects dict type, but got ' \ | |
f'{type(hook_cfg)}' | |
hook_cfg = hook_cfg.copy() | |
priority = hook_cfg.pop('priority', 'NORMAL') | |
hook = build_from_cfg(hook_cfg, HOOKS) | |
runner.register_hook(hook, priority=priority) | |
if cfg.resume_from: | |
runner.resume(cfg.resume_from) | |
elif cfg.load_from: | |
runner.load_checkpoint(cfg.load_from) | |
runner.run(data_loaders, cfg.workflow) | |