Spaces:
Runtime error
Runtime error
import mmcv | |
from mmcv.image import tensor2imgs | |
from mmdet.core import bbox_mapping | |
from ..builder import DETECTORS, build_backbone, build_head, build_neck | |
from .base import BaseDetector | |
class RPN(BaseDetector): | |
"""Implementation of Region Proposal Network.""" | |
def __init__(self, | |
backbone, | |
neck, | |
rpn_head, | |
train_cfg, | |
test_cfg, | |
pretrained=None): | |
super(RPN, self).__init__() | |
self.backbone = build_backbone(backbone) | |
self.neck = build_neck(neck) if neck is not None else None | |
rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None | |
rpn_head.update(train_cfg=rpn_train_cfg) | |
rpn_head.update(test_cfg=test_cfg.rpn) | |
self.rpn_head = build_head(rpn_head) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.init_weights(pretrained=pretrained) | |
def init_weights(self, pretrained=None): | |
"""Initialize the weights in detector. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
super(RPN, self).init_weights(pretrained) | |
self.backbone.init_weights(pretrained=pretrained) | |
if self.with_neck: | |
self.neck.init_weights() | |
self.rpn_head.init_weights() | |
def extract_feat(self, img): | |
"""Extract features. | |
Args: | |
img (torch.Tensor): Image tensor with shape (n, c, h ,w). | |
Returns: | |
list[torch.Tensor]: Multi-level features that may have | |
different resolutions. | |
""" | |
x = self.backbone(img) | |
if self.with_neck: | |
x = self.neck(x) | |
return x | |
def forward_dummy(self, img): | |
"""Dummy forward function.""" | |
x = self.extract_feat(img) | |
rpn_outs = self.rpn_head(x) | |
return rpn_outs | |
def forward_train(self, | |
img, | |
img_metas, | |
gt_bboxes=None, | |
gt_bboxes_ignore=None): | |
""" | |
Args: | |
img (Tensor): Input images of shape (N, C, H, W). | |
Typically these should be mean centered and std scaled. | |
img_metas (list[dict]): A List of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
:class:`mmdet.datasets.pipelines.Collect`. | |
gt_bboxes (list[Tensor]): Each item are the truth boxes for each | |
image in [tl_x, tl_y, br_x, br_y] format. | |
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
if (isinstance(self.train_cfg.rpn, dict) | |
and self.train_cfg.rpn.get('debug', False)): | |
self.rpn_head.debug_imgs = tensor2imgs(img) | |
x = self.extract_feat(img) | |
losses = self.rpn_head.forward_train(x, img_metas, gt_bboxes, None, | |
gt_bboxes_ignore) | |
return losses | |
def simple_test(self, img, img_metas, rescale=False): | |
"""Test function without test time augmentation. | |
Args: | |
imgs (list[torch.Tensor]): List of multiple images | |
img_metas (list[dict]): List of image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[np.ndarray]: proposals | |
""" | |
x = self.extract_feat(img) | |
proposal_list = self.rpn_head.simple_test_rpn(x, img_metas) | |
if rescale: | |
for proposals, meta in zip(proposal_list, img_metas): | |
proposals[:, :4] /= proposals.new_tensor(meta['scale_factor']) | |
return [proposal.cpu().numpy() for proposal in proposal_list] | |
def aug_test(self, imgs, img_metas, rescale=False): | |
"""Test function with test time augmentation. | |
Args: | |
imgs (list[torch.Tensor]): List of multiple images | |
img_metas (list[dict]): List of image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[np.ndarray]: proposals | |
""" | |
proposal_list = self.rpn_head.aug_test_rpn( | |
self.extract_feats(imgs), img_metas) | |
if not rescale: | |
for proposals, img_meta in zip(proposal_list, img_metas[0]): | |
img_shape = img_meta['img_shape'] | |
scale_factor = img_meta['scale_factor'] | |
flip = img_meta['flip'] | |
flip_direction = img_meta['flip_direction'] | |
proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, | |
scale_factor, flip, | |
flip_direction) | |
return [proposal.cpu().numpy() for proposal in proposal_list] | |
def show_result(self, data, result, top_k=20, **kwargs): | |
"""Show RPN proposals on the image. | |
Args: | |
data (str or np.ndarray): Image filename or loaded image. | |
result (Tensor or tuple): The results to draw over `img` | |
bbox_result or (bbox_result, segm_result). | |
top_k (int): Plot the first k bboxes only | |
if set positive. Default: 20 | |
Returns: | |
np.ndarray: The image with bboxes drawn on it. | |
""" | |
mmcv.imshow_bboxes(data, result, top_k=top_k) | |