Spaces:
Runtime error
Runtime error
from mmdet.core import bbox2result | |
from ..builder import DETECTORS | |
from .single_stage import SingleStageDetector | |
class DETR(SingleStageDetector): | |
r"""Implementation of `DETR: End-to-End Object Detection with | |
Transformers <https://arxiv.org/pdf/2005.12872>`_""" | |
def __init__(self, | |
backbone, | |
bbox_head, | |
train_cfg=None, | |
test_cfg=None, | |
pretrained=None): | |
super(DETR, self).__init__(backbone, None, bbox_head, train_cfg, | |
test_cfg, pretrained) | |
def simple_test(self, img, img_metas, rescale=False): | |
"""Test function without test time augmentation. | |
Args: | |
imgs (list[torch.Tensor]): List of multiple images | |
img_metas (list[dict]): List of image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[list[np.ndarray]]: BBox results of each image and classes. | |
The outer list corresponds to each image. The inner list | |
corresponds to each class. | |
""" | |
batch_size = len(img_metas) | |
assert batch_size == 1, 'Currently only batch_size 1 for inference ' \ | |
f'mode is supported. Found batch_size {batch_size}.' | |
x = self.extract_feat(img) | |
outs = self.bbox_head(x, img_metas) | |
bbox_list = self.bbox_head.get_bboxes( | |
*outs, img_metas, rescale=rescale) | |
bbox_results = [ | |
bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) | |
for det_bboxes, det_labels in bbox_list | |
] | |
return bbox_results | |