Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import annotator.uniformer.mmcv as mmcv | |
from .hook import HOOKS, Hook | |
from .lr_updater import annealing_cos, annealing_linear, format_param | |
class MomentumUpdaterHook(Hook): | |
def __init__(self, | |
by_epoch=True, | |
warmup=None, | |
warmup_iters=0, | |
warmup_ratio=0.9): | |
# validate the "warmup" argument | |
if warmup is not None: | |
if warmup not in ['constant', 'linear', 'exp']: | |
raise ValueError( | |
f'"{warmup}" is not a supported type for warming up, valid' | |
' types are "constant" and "linear"') | |
if warmup is not None: | |
assert warmup_iters > 0, \ | |
'"warmup_iters" must be a positive integer' | |
assert 0 < warmup_ratio <= 1.0, \ | |
'"warmup_momentum" must be in range (0,1]' | |
self.by_epoch = by_epoch | |
self.warmup = warmup | |
self.warmup_iters = warmup_iters | |
self.warmup_ratio = warmup_ratio | |
self.base_momentum = [] # initial momentum for all param groups | |
self.regular_momentum = [ | |
] # expected momentum if no warming up is performed | |
def _set_momentum(self, runner, momentum_groups): | |
if isinstance(runner.optimizer, dict): | |
for k, optim in runner.optimizer.items(): | |
for param_group, mom in zip(optim.param_groups, | |
momentum_groups[k]): | |
if 'momentum' in param_group.keys(): | |
param_group['momentum'] = mom | |
elif 'betas' in param_group.keys(): | |
param_group['betas'] = (mom, param_group['betas'][1]) | |
else: | |
for param_group, mom in zip(runner.optimizer.param_groups, | |
momentum_groups): | |
if 'momentum' in param_group.keys(): | |
param_group['momentum'] = mom | |
elif 'betas' in param_group.keys(): | |
param_group['betas'] = (mom, param_group['betas'][1]) | |
def get_momentum(self, runner, base_momentum): | |
raise NotImplementedError | |
def get_regular_momentum(self, runner): | |
if isinstance(runner.optimizer, dict): | |
momentum_groups = {} | |
for k in runner.optimizer.keys(): | |
_momentum_group = [ | |
self.get_momentum(runner, _base_momentum) | |
for _base_momentum in self.base_momentum[k] | |
] | |
momentum_groups.update({k: _momentum_group}) | |
return momentum_groups | |
else: | |
return [ | |
self.get_momentum(runner, _base_momentum) | |
for _base_momentum in self.base_momentum | |
] | |
def get_warmup_momentum(self, cur_iters): | |
def _get_warmup_momentum(cur_iters, regular_momentum): | |
if self.warmup == 'constant': | |
warmup_momentum = [ | |
_momentum / self.warmup_ratio | |
for _momentum in self.regular_momentum | |
] | |
elif self.warmup == 'linear': | |
k = (1 - cur_iters / self.warmup_iters) * (1 - | |
self.warmup_ratio) | |
warmup_momentum = [ | |
_momentum / (1 - k) for _momentum in self.regular_mom | |
] | |
elif self.warmup == 'exp': | |
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters) | |
warmup_momentum = [ | |
_momentum / k for _momentum in self.regular_mom | |
] | |
return warmup_momentum | |
if isinstance(self.regular_momentum, dict): | |
momentum_groups = {} | |
for key, regular_momentum in self.regular_momentum.items(): | |
momentum_groups[key] = _get_warmup_momentum( | |
cur_iters, regular_momentum) | |
return momentum_groups | |
else: | |
return _get_warmup_momentum(cur_iters, self.regular_momentum) | |
def before_run(self, runner): | |
# NOTE: when resuming from a checkpoint, | |
# if 'initial_momentum' is not saved, | |
# it will be set according to the optimizer params | |
if isinstance(runner.optimizer, dict): | |
self.base_momentum = {} | |
for k, optim in runner.optimizer.items(): | |
for group in optim.param_groups: | |
if 'momentum' in group.keys(): | |
group.setdefault('initial_momentum', group['momentum']) | |
else: | |
group.setdefault('initial_momentum', group['betas'][0]) | |
_base_momentum = [ | |
group['initial_momentum'] for group in optim.param_groups | |
] | |
self.base_momentum.update({k: _base_momentum}) | |
else: | |
for group in runner.optimizer.param_groups: | |
if 'momentum' in group.keys(): | |
group.setdefault('initial_momentum', group['momentum']) | |
else: | |
group.setdefault('initial_momentum', group['betas'][0]) | |
self.base_momentum = [ | |
group['initial_momentum'] | |
for group in runner.optimizer.param_groups | |
] | |
def before_train_epoch(self, runner): | |
if not self.by_epoch: | |
return | |
self.regular_mom = self.get_regular_momentum(runner) | |
self._set_momentum(runner, self.regular_mom) | |
def before_train_iter(self, runner): | |
cur_iter = runner.iter | |
if not self.by_epoch: | |
self.regular_mom = self.get_regular_momentum(runner) | |
if self.warmup is None or cur_iter >= self.warmup_iters: | |
self._set_momentum(runner, self.regular_mom) | |
else: | |
warmup_momentum = self.get_warmup_momentum(cur_iter) | |
self._set_momentum(runner, warmup_momentum) | |
elif self.by_epoch: | |
if self.warmup is None or cur_iter > self.warmup_iters: | |
return | |
elif cur_iter == self.warmup_iters: | |
self._set_momentum(runner, self.regular_mom) | |
else: | |
warmup_momentum = self.get_warmup_momentum(cur_iter) | |
self._set_momentum(runner, warmup_momentum) | |
class StepMomentumUpdaterHook(MomentumUpdaterHook): | |
"""Step momentum scheduler with min value clipping. | |
Args: | |
step (int | list[int]): Step to decay the momentum. If an int value is | |
given, regard it as the decay interval. If a list is given, decay | |
momentum at these steps. | |
gamma (float, optional): Decay momentum ratio. Default: 0.5. | |
min_momentum (float, optional): Minimum momentum value to keep. If | |
momentum after decay is lower than this value, it will be clipped | |
accordingly. If None is given, we don't perform lr clipping. | |
Default: None. | |
""" | |
def __init__(self, step, gamma=0.5, min_momentum=None, **kwargs): | |
if isinstance(step, list): | |
assert mmcv.is_list_of(step, int) | |
assert all([s > 0 for s in step]) | |
elif isinstance(step, int): | |
assert step > 0 | |
else: | |
raise TypeError('"step" must be a list or integer') | |
self.step = step | |
self.gamma = gamma | |
self.min_momentum = min_momentum | |
super(StepMomentumUpdaterHook, self).__init__(**kwargs) | |
def get_momentum(self, runner, base_momentum): | |
progress = runner.epoch if self.by_epoch else runner.iter | |
# calculate exponential term | |
if isinstance(self.step, int): | |
exp = progress // self.step | |
else: | |
exp = len(self.step) | |
for i, s in enumerate(self.step): | |
if progress < s: | |
exp = i | |
break | |
momentum = base_momentum * (self.gamma**exp) | |
if self.min_momentum is not None: | |
# clip to a minimum value | |
momentum = max(momentum, self.min_momentum) | |
return momentum | |
class CosineAnnealingMomentumUpdaterHook(MomentumUpdaterHook): | |
def __init__(self, min_momentum=None, min_momentum_ratio=None, **kwargs): | |
assert (min_momentum is None) ^ (min_momentum_ratio is None) | |
self.min_momentum = min_momentum | |
self.min_momentum_ratio = min_momentum_ratio | |
super(CosineAnnealingMomentumUpdaterHook, self).__init__(**kwargs) | |
def get_momentum(self, runner, base_momentum): | |
if self.by_epoch: | |
progress = runner.epoch | |
max_progress = runner.max_epochs | |
else: | |
progress = runner.iter | |
max_progress = runner.max_iters | |
if self.min_momentum_ratio is not None: | |
target_momentum = base_momentum * self.min_momentum_ratio | |
else: | |
target_momentum = self.min_momentum | |
return annealing_cos(base_momentum, target_momentum, | |
progress / max_progress) | |
class CyclicMomentumUpdaterHook(MomentumUpdaterHook): | |
"""Cyclic momentum Scheduler. | |
Implement the cyclical momentum scheduler policy described in | |
https://arxiv.org/pdf/1708.07120.pdf | |
This momentum scheduler usually used together with the CyclicLRUpdater | |
to improve the performance in the 3D detection area. | |
Attributes: | |
target_ratio (tuple[float]): Relative ratio of the lowest momentum and | |
the highest momentum to the initial momentum. | |
cyclic_times (int): Number of cycles during training | |
step_ratio_up (float): The ratio of the increasing process of momentum | |
in the total cycle. | |
by_epoch (bool): Whether to update momentum by epoch. | |
""" | |
def __init__(self, | |
by_epoch=False, | |
target_ratio=(0.85 / 0.95, 1), | |
cyclic_times=1, | |
step_ratio_up=0.4, | |
**kwargs): | |
if isinstance(target_ratio, float): | |
target_ratio = (target_ratio, target_ratio / 1e5) | |
elif isinstance(target_ratio, tuple): | |
target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \ | |
if len(target_ratio) == 1 else target_ratio | |
else: | |
raise ValueError('target_ratio should be either float ' | |
f'or tuple, got {type(target_ratio)}') | |
assert len(target_ratio) == 2, \ | |
'"target_ratio" must be list or tuple of two floats' | |
assert 0 <= step_ratio_up < 1.0, \ | |
'"step_ratio_up" must be in range [0,1)' | |
self.target_ratio = target_ratio | |
self.cyclic_times = cyclic_times | |
self.step_ratio_up = step_ratio_up | |
self.momentum_phases = [] # init momentum_phases | |
# currently only support by_epoch=False | |
assert not by_epoch, \ | |
'currently only support "by_epoch" = False' | |
super(CyclicMomentumUpdaterHook, self).__init__(by_epoch, **kwargs) | |
def before_run(self, runner): | |
super(CyclicMomentumUpdaterHook, self).before_run(runner) | |
# initiate momentum_phases | |
# total momentum_phases are separated as up and down | |
max_iter_per_phase = runner.max_iters // self.cyclic_times | |
iter_up_phase = int(self.step_ratio_up * max_iter_per_phase) | |
self.momentum_phases.append( | |
[0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]]) | |
self.momentum_phases.append([ | |
iter_up_phase, max_iter_per_phase, max_iter_per_phase, | |
self.target_ratio[0], self.target_ratio[1] | |
]) | |
def get_momentum(self, runner, base_momentum): | |
curr_iter = runner.iter | |
for (start_iter, end_iter, max_iter_per_phase, start_ratio, | |
end_ratio) in self.momentum_phases: | |
curr_iter %= max_iter_per_phase | |
if start_iter <= curr_iter < end_iter: | |
progress = curr_iter - start_iter | |
return annealing_cos(base_momentum * start_ratio, | |
base_momentum * end_ratio, | |
progress / (end_iter - start_iter)) | |
class OneCycleMomentumUpdaterHook(MomentumUpdaterHook): | |
"""OneCycle momentum Scheduler. | |
This momentum scheduler usually used together with the OneCycleLrUpdater | |
to improve the performance. | |
Args: | |
base_momentum (float or list): Lower momentum boundaries in the cycle | |
for each parameter group. Note that momentum is cycled inversely | |
to learning rate; at the peak of a cycle, momentum is | |
'base_momentum' and learning rate is 'max_lr'. | |
Default: 0.85 | |
max_momentum (float or list): Upper momentum boundaries in the cycle | |
for each parameter group. Functionally, | |
it defines the cycle amplitude (max_momentum - base_momentum). | |
Note that momentum is cycled inversely | |
to learning rate; at the start of a cycle, momentum is | |
'max_momentum' and learning rate is 'base_lr' | |
Default: 0.95 | |
pct_start (float): The percentage of the cycle (in number of steps) | |
spent increasing the learning rate. | |
Default: 0.3 | |
anneal_strategy (str): {'cos', 'linear'} | |
Specifies the annealing strategy: 'cos' for cosine annealing, | |
'linear' for linear annealing. | |
Default: 'cos' | |
three_phase (bool): If three_phase is True, use a third phase of the | |
schedule to annihilate the learning rate according to | |
final_div_factor instead of modifying the second phase (the first | |
two phases will be symmetrical about the step indicated by | |
pct_start). | |
Default: False | |
""" | |
def __init__(self, | |
base_momentum=0.85, | |
max_momentum=0.95, | |
pct_start=0.3, | |
anneal_strategy='cos', | |
three_phase=False, | |
**kwargs): | |
# validate by_epoch, currently only support by_epoch=False | |
if 'by_epoch' not in kwargs: | |
kwargs['by_epoch'] = False | |
else: | |
assert not kwargs['by_epoch'], \ | |
'currently only support "by_epoch" = False' | |
if not isinstance(base_momentum, (float, list, dict)): | |
raise ValueError('base_momentum must be the type among of float,' | |
'list or dict.') | |
self._base_momentum = base_momentum | |
if not isinstance(max_momentum, (float, list, dict)): | |
raise ValueError('max_momentum must be the type among of float,' | |
'list or dict.') | |
self._max_momentum = max_momentum | |
# validate pct_start | |
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): | |
raise ValueError('Expected float between 0 and 1 pct_start, but ' | |
f'got {pct_start}') | |
self.pct_start = pct_start | |
# validate anneal_strategy | |
if anneal_strategy not in ['cos', 'linear']: | |
raise ValueError('anneal_strategy must by one of "cos" or ' | |
f'"linear", instead got {anneal_strategy}') | |
elif anneal_strategy == 'cos': | |
self.anneal_func = annealing_cos | |
elif anneal_strategy == 'linear': | |
self.anneal_func = annealing_linear | |
self.three_phase = three_phase | |
self.momentum_phases = [] # init momentum_phases | |
super(OneCycleMomentumUpdaterHook, self).__init__(**kwargs) | |
def before_run(self, runner): | |
if isinstance(runner.optimizer, dict): | |
for k, optim in runner.optimizer.items(): | |
if ('momentum' not in optim.defaults | |
and 'betas' not in optim.defaults): | |
raise ValueError('optimizer must support momentum with' | |
'option enabled') | |
self.use_beta1 = 'betas' in optim.defaults | |
_base_momentum = format_param(k, optim, self._base_momentum) | |
_max_momentum = format_param(k, optim, self._max_momentum) | |
for group, b_momentum, m_momentum in zip( | |
optim.param_groups, _base_momentum, _max_momentum): | |
if self.use_beta1: | |
_, beta2 = group['betas'] | |
group['betas'] = (m_momentum, beta2) | |
else: | |
group['momentum'] = m_momentum | |
group['base_momentum'] = b_momentum | |
group['max_momentum'] = m_momentum | |
else: | |
optim = runner.optimizer | |
if ('momentum' not in optim.defaults | |
and 'betas' not in optim.defaults): | |
raise ValueError('optimizer must support momentum with' | |
'option enabled') | |
self.use_beta1 = 'betas' in optim.defaults | |
k = type(optim).__name__ | |
_base_momentum = format_param(k, optim, self._base_momentum) | |
_max_momentum = format_param(k, optim, self._max_momentum) | |
for group, b_momentum, m_momentum in zip(optim.param_groups, | |
_base_momentum, | |
_max_momentum): | |
if self.use_beta1: | |
_, beta2 = group['betas'] | |
group['betas'] = (m_momentum, beta2) | |
else: | |
group['momentum'] = m_momentum | |
group['base_momentum'] = b_momentum | |
group['max_momentum'] = m_momentum | |
if self.three_phase: | |
self.momentum_phases.append({ | |
'end_iter': | |
float(self.pct_start * runner.max_iters) - 1, | |
'start_momentum': | |
'max_momentum', | |
'end_momentum': | |
'base_momentum' | |
}) | |
self.momentum_phases.append({ | |
'end_iter': | |
float(2 * self.pct_start * runner.max_iters) - 2, | |
'start_momentum': | |
'base_momentum', | |
'end_momentum': | |
'max_momentum' | |
}) | |
self.momentum_phases.append({ | |
'end_iter': runner.max_iters - 1, | |
'start_momentum': 'max_momentum', | |
'end_momentum': 'max_momentum' | |
}) | |
else: | |
self.momentum_phases.append({ | |
'end_iter': | |
float(self.pct_start * runner.max_iters) - 1, | |
'start_momentum': | |
'max_momentum', | |
'end_momentum': | |
'base_momentum' | |
}) | |
self.momentum_phases.append({ | |
'end_iter': runner.max_iters - 1, | |
'start_momentum': 'base_momentum', | |
'end_momentum': 'max_momentum' | |
}) | |
def _set_momentum(self, runner, momentum_groups): | |
if isinstance(runner.optimizer, dict): | |
for k, optim in runner.optimizer.items(): | |
for param_group, mom in zip(optim.param_groups, | |
momentum_groups[k]): | |
if 'momentum' in param_group.keys(): | |
param_group['momentum'] = mom | |
elif 'betas' in param_group.keys(): | |
param_group['betas'] = (mom, param_group['betas'][1]) | |
else: | |
for param_group, mom in zip(runner.optimizer.param_groups, | |
momentum_groups): | |
if 'momentum' in param_group.keys(): | |
param_group['momentum'] = mom | |
elif 'betas' in param_group.keys(): | |
param_group['betas'] = (mom, param_group['betas'][1]) | |
def get_momentum(self, runner, param_group): | |
curr_iter = runner.iter | |
start_iter = 0 | |
for i, phase in enumerate(self.momentum_phases): | |
end_iter = phase['end_iter'] | |
if curr_iter <= end_iter or i == len(self.momentum_phases) - 1: | |
pct = (curr_iter - start_iter) / (end_iter - start_iter) | |
momentum = self.anneal_func( | |
param_group[phase['start_momentum']], | |
param_group[phase['end_momentum']], pct) | |
break | |
start_iter = end_iter | |
return momentum | |
def get_regular_momentum(self, runner): | |
if isinstance(runner.optimizer, dict): | |
momentum_groups = {} | |
for k, optim in runner.optimizer.items(): | |
_momentum_group = [ | |
self.get_momentum(runner, param_group) | |
for param_group in optim.param_groups | |
] | |
momentum_groups.update({k: _momentum_group}) | |
return momentum_groups | |
else: | |
momentum_groups = [] | |
for param_group in runner.optimizer.param_groups: | |
momentum_groups.append(self.get_momentum(runner, param_group)) | |
return momentum_groups | |