Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import datetime | |
import os | |
import os.path as osp | |
from collections import OrderedDict | |
import torch | |
import torch.distributed as dist | |
import annotator.uniformer.mmcv as mmcv | |
from annotator.uniformer.mmcv.fileio.file_client import FileClient | |
from annotator.uniformer.mmcv.utils import is_tuple_of, scandir | |
from ..hook import HOOKS | |
from .base import LoggerHook | |
class TextLoggerHook(LoggerHook): | |
"""Logger hook in text. | |
In this logger hook, the information will be printed on terminal and | |
saved in json file. | |
Args: | |
by_epoch (bool, optional): Whether EpochBasedRunner is used. | |
Default: True. | |
interval (int, optional): Logging interval (every k iterations). | |
Default: 10. | |
ignore_last (bool, optional): Ignore the log of last iterations in each | |
epoch if less than :attr:`interval`. Default: True. | |
reset_flag (bool, optional): Whether to clear the output buffer after | |
logging. Default: False. | |
interval_exp_name (int, optional): Logging interval for experiment | |
name. This feature is to help users conveniently get the experiment | |
information from screen or log file. Default: 1000. | |
out_dir (str, optional): Logs are saved in ``runner.work_dir`` default. | |
If ``out_dir`` is specified, logs will be copied to a new directory | |
which is the concatenation of ``out_dir`` and the last level | |
directory of ``runner.work_dir``. Default: None. | |
`New in version 1.3.16.` | |
out_suffix (str or tuple[str], optional): Those filenames ending with | |
``out_suffix`` will be copied to ``out_dir``. | |
Default: ('.log.json', '.log', '.py'). | |
`New in version 1.3.16.` | |
keep_local (bool, optional): Whether to keep local log when | |
:attr:`out_dir` is specified. If False, the local log will be | |
removed. Default: True. | |
`New in version 1.3.16.` | |
file_client_args (dict, optional): Arguments to instantiate a | |
FileClient. See :class:`mmcv.fileio.FileClient` for details. | |
Default: None. | |
`New in version 1.3.16.` | |
""" | |
def __init__(self, | |
by_epoch=True, | |
interval=10, | |
ignore_last=True, | |
reset_flag=False, | |
interval_exp_name=1000, | |
out_dir=None, | |
out_suffix=('.log.json', '.log', '.py'), | |
keep_local=True, | |
file_client_args=None): | |
super(TextLoggerHook, self).__init__(interval, ignore_last, reset_flag, | |
by_epoch) | |
self.by_epoch = by_epoch | |
self.time_sec_tot = 0 | |
self.interval_exp_name = interval_exp_name | |
if out_dir is None and file_client_args is not None: | |
raise ValueError( | |
'file_client_args should be "None" when `out_dir` is not' | |
'specified.') | |
self.out_dir = out_dir | |
if not (out_dir is None or isinstance(out_dir, str) | |
or is_tuple_of(out_dir, str)): | |
raise TypeError('out_dir should be "None" or string or tuple of ' | |
'string, but got {out_dir}') | |
self.out_suffix = out_suffix | |
self.keep_local = keep_local | |
self.file_client_args = file_client_args | |
if self.out_dir is not None: | |
self.file_client = FileClient.infer_client(file_client_args, | |
self.out_dir) | |
def before_run(self, runner): | |
super(TextLoggerHook, self).before_run(runner) | |
if self.out_dir is not None: | |
self.file_client = FileClient.infer_client(self.file_client_args, | |
self.out_dir) | |
# The final `self.out_dir` is the concatenation of `self.out_dir` | |
# and the last level directory of `runner.work_dir` | |
basename = osp.basename(runner.work_dir.rstrip(osp.sep)) | |
self.out_dir = self.file_client.join_path(self.out_dir, basename) | |
runner.logger.info( | |
(f'Text logs will be saved to {self.out_dir} by ' | |
f'{self.file_client.name} after the training process.')) | |
self.start_iter = runner.iter | |
self.json_log_path = osp.join(runner.work_dir, | |
f'{runner.timestamp}.log.json') | |
if runner.meta is not None: | |
self._dump_log(runner.meta, runner) | |
def _get_max_memory(self, runner): | |
device = getattr(runner.model, 'output_device', None) | |
mem = torch.cuda.max_memory_allocated(device=device) | |
mem_mb = torch.tensor([mem / (1024 * 1024)], | |
dtype=torch.int, | |
device=device) | |
if runner.world_size > 1: | |
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX) | |
return mem_mb.item() | |
def _log_info(self, log_dict, runner): | |
# print exp name for users to distinguish experiments | |
# at every ``interval_exp_name`` iterations and the end of each epoch | |
if runner.meta is not None and 'exp_name' in runner.meta: | |
if (self.every_n_iters(runner, self.interval_exp_name)) or ( | |
self.by_epoch and self.end_of_epoch(runner)): | |
exp_info = f'Exp name: {runner.meta["exp_name"]}' | |
runner.logger.info(exp_info) | |
if log_dict['mode'] == 'train': | |
if isinstance(log_dict['lr'], dict): | |
lr_str = [] | |
for k, val in log_dict['lr'].items(): | |
lr_str.append(f'lr_{k}: {val:.3e}') | |
lr_str = ' '.join(lr_str) | |
else: | |
lr_str = f'lr: {log_dict["lr"]:.3e}' | |
# by epoch: Epoch [4][100/1000] | |
# by iter: Iter [100/100000] | |
if self.by_epoch: | |
log_str = f'Epoch [{log_dict["epoch"]}]' \ | |
f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' | |
else: | |
log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' | |
log_str += f'{lr_str}, ' | |
if 'time' in log_dict.keys(): | |
self.time_sec_tot += (log_dict['time'] * self.interval) | |
time_sec_avg = self.time_sec_tot / ( | |
runner.iter - self.start_iter + 1) | |
eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) | |
eta_str = str(datetime.timedelta(seconds=int(eta_sec))) | |
log_str += f'eta: {eta_str}, ' | |
log_str += f'time: {log_dict["time"]:.3f}, ' \ | |
f'data_time: {log_dict["data_time"]:.3f}, ' | |
# statistic memory | |
if torch.cuda.is_available(): | |
log_str += f'memory: {log_dict["memory"]}, ' | |
else: | |
# val/test time | |
# here 1000 is the length of the val dataloader | |
# by epoch: Epoch[val] [4][1000] | |
# by iter: Iter[val] [1000] | |
if self.by_epoch: | |
log_str = f'Epoch({log_dict["mode"]}) ' \ | |
f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' | |
else: | |
log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' | |
log_items = [] | |
for name, val in log_dict.items(): | |
# TODO: resolve this hack | |
# these items have been in log_str | |
if name in [ | |
'mode', 'Epoch', 'iter', 'lr', 'time', 'data_time', | |
'memory', 'epoch' | |
]: | |
continue | |
if isinstance(val, float): | |
val = f'{val:.4f}' | |
log_items.append(f'{name}: {val}') | |
log_str += ', '.join(log_items) | |
runner.logger.info(log_str) | |
def _dump_log(self, log_dict, runner): | |
# dump log in json format | |
json_log = OrderedDict() | |
for k, v in log_dict.items(): | |
json_log[k] = self._round_float(v) | |
# only append log at last line | |
if runner.rank == 0: | |
with open(self.json_log_path, 'a+') as f: | |
mmcv.dump(json_log, f, file_format='json') | |
f.write('\n') | |
def _round_float(self, items): | |
if isinstance(items, list): | |
return [self._round_float(item) for item in items] | |
elif isinstance(items, float): | |
return round(items, 5) | |
else: | |
return items | |
def log(self, runner): | |
if 'eval_iter_num' in runner.log_buffer.output: | |
# this doesn't modify runner.iter and is regardless of by_epoch | |
cur_iter = runner.log_buffer.output.pop('eval_iter_num') | |
else: | |
cur_iter = self.get_iter(runner, inner_iter=True) | |
log_dict = OrderedDict( | |
mode=self.get_mode(runner), | |
epoch=self.get_epoch(runner), | |
iter=cur_iter) | |
# only record lr of the first param group | |
cur_lr = runner.current_lr() | |
if isinstance(cur_lr, list): | |
log_dict['lr'] = cur_lr[0] | |
else: | |
assert isinstance(cur_lr, dict) | |
log_dict['lr'] = {} | |
for k, lr_ in cur_lr.items(): | |
assert isinstance(lr_, list) | |
log_dict['lr'].update({k: lr_[0]}) | |
if 'time' in runner.log_buffer.output: | |
# statistic memory | |
if torch.cuda.is_available(): | |
log_dict['memory'] = self._get_max_memory(runner) | |
log_dict = dict(log_dict, **runner.log_buffer.output) | |
self._log_info(log_dict, runner) | |
self._dump_log(log_dict, runner) | |
return log_dict | |
def after_run(self, runner): | |
# copy or upload logs to self.out_dir | |
if self.out_dir is not None: | |
for filename in scandir(runner.work_dir, self.out_suffix, True): | |
local_filepath = osp.join(runner.work_dir, filename) | |
out_filepath = self.file_client.join_path( | |
self.out_dir, filename) | |
with open(local_filepath, 'r') as f: | |
self.file_client.put_text(f.read(), out_filepath) | |
runner.logger.info( | |
(f'The file {local_filepath} has been uploaded to ' | |
f'{out_filepath}.')) | |
if not self.keep_local: | |
os.remove(local_filepath) | |
runner.logger.info( | |
(f'{local_filepath} was removed due to the ' | |
'`self.keep_local=False`')) | |