abhishek's picture
abhishek HF staff
first commit
58f667f
raw
history blame
1.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.autograd import Function
from ..utils import ext_loader
ext_module = ext_loader.load_ext('_ext', ['ball_query_forward'])
class BallQuery(Function):
"""Find nearby points in spherical space."""
@staticmethod
def forward(ctx, min_radius: float, max_radius: float, sample_num: int,
xyz: torch.Tensor, center_xyz: torch.Tensor) -> torch.Tensor:
"""
Args:
min_radius (float): minimum radius of the balls.
max_radius (float): maximum radius of the balls.
sample_num (int): maximum number of features in the balls.
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
center_xyz (Tensor): (B, npoint, 3) centers of the ball query.
Returns:
Tensor: (B, npoint, nsample) tensor with the indices of
the features that form the query balls.
"""
assert center_xyz.is_contiguous()
assert xyz.is_contiguous()
assert min_radius < max_radius
B, N, _ = xyz.size()
npoint = center_xyz.size(1)
idx = xyz.new_zeros(B, npoint, sample_num, dtype=torch.int)
ext_module.ball_query_forward(
center_xyz,
xyz,
idx,
b=B,
n=N,
m=npoint,
min_radius=min_radius,
max_radius=max_radius,
nsample=sample_num)
if torch.__version__ != 'parrots':
ctx.mark_non_differentiable(idx)
return idx
@staticmethod
def backward(ctx, a=None):
return None, None, None, None
ball_query = BallQuery.apply