File size: 5,713 Bytes
58f667f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import auto_fp16

from ..builder import NECKS
from .fpn import FPN


@NECKS.register_module()
class PAFPN(FPN):
    """Path Aggregation Network for Instance Segmentation.

    This is an implementation of the `PAFPN in Path Aggregation Network
    <https://arxiv.org/abs/1803.01534>`_.

    Args:
        in_channels (List[int]): Number of input channels per scale.
        out_channels (int): Number of output channels (used at each scale)
        num_outs (int): Number of output scales.
        start_level (int): Index of the start input backbone level used to
            build the feature pyramid. Default: 0.
        end_level (int): Index of the end input backbone level (exclusive) to
            build the feature pyramid. Default: -1, which means the last level.
        add_extra_convs (bool): Whether to add conv layers on top of the
            original feature maps. Default: False.
        extra_convs_on_inputs (bool): Whether to apply extra conv on
            the original feature from the backbone. Default: False.
        relu_before_extra_convs (bool): Whether to apply relu before the extra
            conv. Default: False.
        no_norm_on_lateral (bool): Whether to apply norm on lateral.
            Default: False.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (str): Config dict for activation layer in ConvModule.
            Default: None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_outs,
                 start_level=0,
                 end_level=-1,
                 add_extra_convs=False,
                 extra_convs_on_inputs=True,
                 relu_before_extra_convs=False,
                 no_norm_on_lateral=False,
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=None):
        super(PAFPN,
              self).__init__(in_channels, out_channels, num_outs, start_level,
                             end_level, add_extra_convs, extra_convs_on_inputs,
                             relu_before_extra_convs, no_norm_on_lateral,
                             conv_cfg, norm_cfg, act_cfg)
        # add extra bottom up pathway
        self.downsample_convs = nn.ModuleList()
        self.pafpn_convs = nn.ModuleList()
        for i in range(self.start_level + 1, self.backbone_end_level):
            d_conv = ConvModule(
                out_channels,
                out_channels,
                3,
                stride=2,
                padding=1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg,
                inplace=False)
            pafpn_conv = ConvModule(
                out_channels,
                out_channels,
                3,
                padding=1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg,
                inplace=False)
            self.downsample_convs.append(d_conv)
            self.pafpn_convs.append(pafpn_conv)

    @auto_fp16()
    def forward(self, inputs):
        """Forward function."""
        assert len(inputs) == len(self.in_channels)

        # build laterals
        laterals = [
            lateral_conv(inputs[i + self.start_level])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]

        # build top-down path
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            prev_shape = laterals[i - 1].shape[2:]
            laterals[i - 1] += F.interpolate(
                laterals[i], size=prev_shape, mode='nearest')

        # build outputs
        # part 1: from original levels
        inter_outs = [
            self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
        ]

        # part 2: add bottom-up path
        for i in range(0, used_backbone_levels - 1):
            inter_outs[i + 1] += self.downsample_convs[i](inter_outs[i])

        outs = []
        outs.append(inter_outs[0])
        outs.extend([
            self.pafpn_convs[i - 1](inter_outs[i])
            for i in range(1, used_backbone_levels)
        ])

        # part 3: add extra levels
        if self.num_outs > len(outs):
            # use max pool to get more levels on top of outputs
            # (e.g., Faster R-CNN, Mask R-CNN)
            if not self.add_extra_convs:
                for i in range(self.num_outs - used_backbone_levels):
                    outs.append(F.max_pool2d(outs[-1], 1, stride=2))
            # add conv layers on top of original feature maps (RetinaNet)
            else:
                if self.add_extra_convs == 'on_input':
                    orig = inputs[self.backbone_end_level - 1]
                    outs.append(self.fpn_convs[used_backbone_levels](orig))
                elif self.add_extra_convs == 'on_lateral':
                    outs.append(self.fpn_convs[used_backbone_levels](
                        laterals[-1]))
                elif self.add_extra_convs == 'on_output':
                    outs.append(self.fpn_convs[used_backbone_levels](outs[-1]))
                else:
                    raise NotImplementedError
                for i in range(used_backbone_levels + 1, self.num_outs):
                    if self.relu_before_extra_convs:
                        outs.append(self.fpn_convs[i](F.relu(outs[-1])))
                    else:
                        outs.append(self.fpn_convs[i](outs[-1]))
        return tuple(outs)