File size: 11,581 Bytes
58f667f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os.path as osp
import warnings
from collections import OrderedDict

import mmcv
import numpy as np
from mmcv.utils import print_log
from torch.utils.data import Dataset

from mmdet.core import eval_map, eval_recalls
from .builder import DATASETS
from .pipelines import Compose


@DATASETS.register_module()
class CustomDataset(Dataset):
    """Custom dataset for detection.

    The annotation format is shown as follows. The `ann` field is optional for
    testing.

    .. code-block:: none

        [
            {
                'filename': 'a.jpg',
                'width': 1280,
                'height': 720,
                'ann': {
                    'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order.
                    'labels': <np.ndarray> (n, ),
                    'bboxes_ignore': <np.ndarray> (k, 4), (optional field)
                    'labels_ignore': <np.ndarray> (k, 4) (optional field)
                }
            },
            ...
        ]

    Args:
        ann_file (str): Annotation file path.
        pipeline (list[dict]): Processing pipeline.
        classes (str | Sequence[str], optional): Specify classes to load.
            If is None, ``cls.CLASSES`` will be used. Default: None.
        data_root (str, optional): Data root for ``ann_file``,
            ``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified.
        test_mode (bool, optional): If set True, annotation will not be loaded.
        filter_empty_gt (bool, optional): If set true, images without bounding
            boxes of the dataset's classes will be filtered out. This option
            only works when `test_mode=False`, i.e., we never filter images
            during tests.
    """

    CLASSES = None

    def __init__(self,
                 ann_file,
                 pipeline,
                 classes=None,
                 data_root=None,
                 img_prefix='',
                 seg_prefix=None,
                 proposal_file=None,
                 test_mode=False,
                 filter_empty_gt=True):
        self.ann_file = ann_file
        self.data_root = data_root
        self.img_prefix = img_prefix
        self.seg_prefix = seg_prefix
        self.proposal_file = proposal_file
        self.test_mode = test_mode
        self.filter_empty_gt = filter_empty_gt
        self.CLASSES = self.get_classes(classes)

        # join paths if data_root is specified
        if self.data_root is not None:
            if not osp.isabs(self.ann_file):
                self.ann_file = osp.join(self.data_root, self.ann_file)
            if not (self.img_prefix is None or osp.isabs(self.img_prefix)):
                self.img_prefix = osp.join(self.data_root, self.img_prefix)
            if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)):
                self.seg_prefix = osp.join(self.data_root, self.seg_prefix)
            if not (self.proposal_file is None
                    or osp.isabs(self.proposal_file)):
                self.proposal_file = osp.join(self.data_root,
                                              self.proposal_file)
        # load annotations (and proposals)
        self.data_infos = self.load_annotations(self.ann_file)

        if self.proposal_file is not None:
            self.proposals = self.load_proposals(self.proposal_file)
        else:
            self.proposals = None

        # filter images too small and containing no annotations
        if not test_mode:
            valid_inds = self._filter_imgs()
            self.data_infos = [self.data_infos[i] for i in valid_inds]
            if self.proposals is not None:
                self.proposals = [self.proposals[i] for i in valid_inds]
            # set group flag for the sampler
            self._set_group_flag()

        # processing pipeline
        self.pipeline = Compose(pipeline)

    def __len__(self):
        """Total number of samples of data."""
        return len(self.data_infos)

    def load_annotations(self, ann_file):
        """Load annotation from annotation file."""
        return mmcv.load(ann_file)

    def load_proposals(self, proposal_file):
        """Load proposal from proposal file."""
        return mmcv.load(proposal_file)

    def get_ann_info(self, idx):
        """Get annotation by index.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Annotation info of specified index.
        """

        return self.data_infos[idx]['ann']

    def get_cat_ids(self, idx):
        """Get category ids by index.

        Args:
            idx (int): Index of data.

        Returns:
            list[int]: All categories in the image of specified index.
        """

        return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist()

    def pre_pipeline(self, results):
        """Prepare results dict for pipeline."""
        results['img_prefix'] = self.img_prefix
        results['seg_prefix'] = self.seg_prefix
        results['proposal_file'] = self.proposal_file
        results['bbox_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []

    def _filter_imgs(self, min_size=32):
        """Filter images too small."""
        if self.filter_empty_gt:
            warnings.warn(
                'CustomDataset does not support filtering empty gt images.')
        valid_inds = []
        for i, img_info in enumerate(self.data_infos):
            if min(img_info['width'], img_info['height']) >= min_size:
                valid_inds.append(i)
        return valid_inds

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)
        for i in range(len(self)):
            img_info = self.data_infos[i]
            if img_info['width'] / img_info['height'] > 1:
                self.flag[i] = 1

    def _rand_another(self, idx):
        """Get another random index from the same group as the given index."""
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        """Get training/test data after pipeline.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Training/test data (with annotation if `test_mode` is set \
                True).
        """

        if self.test_mode:
            return self.prepare_test_img(idx)
        while True:
            data = self.prepare_train_img(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def prepare_train_img(self, idx):
        """Get training data and annotations after pipeline.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Training data and annotation after pipeline with new keys \
                introduced by pipeline.
        """

        img_info = self.data_infos[idx]
        ann_info = self.get_ann_info(idx)
        results = dict(img_info=img_info, ann_info=ann_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def prepare_test_img(self, idx):
        """Get testing data  after pipeline.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Testing data after pipeline with new keys introduced by \
                pipeline.
        """

        img_info = self.data_infos[idx]
        results = dict(img_info=img_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    @classmethod
    def get_classes(cls, classes=None):
        """Get class names of current dataset.

        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.

        Returns:
            tuple[str] or list[str]: Names of categories of the dataset.
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

    def format_results(self, results, **kwargs):
        """Place holder to format result to dataset specific output."""

    def evaluate(self,
                 results,
                 metric='mAP',
                 logger=None,
                 proposal_nums=(100, 300, 1000),
                 iou_thr=0.5,
                 scale_ranges=None):
        """Evaluate the dataset.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | None | str): Logger used for printing
                related information during evaluation. Default: None.
            proposal_nums (Sequence[int]): Proposal number used for evaluating
                recalls, such as recall@100, recall@1000.
                Default: (100, 300, 1000).
            iou_thr (float | list[float]): IoU threshold. Default: 0.5.
            scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP.
                Default: None.
        """

        if not isinstance(metric, str):
            assert len(metric) == 1
            metric = metric[0]
        allowed_metrics = ['mAP', 'recall']
        if metric not in allowed_metrics:
            raise KeyError(f'metric {metric} is not supported')
        annotations = [self.get_ann_info(i) for i in range(len(self))]
        eval_results = OrderedDict()
        iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr
        if metric == 'mAP':
            assert isinstance(iou_thrs, list)
            mean_aps = []
            for iou_thr in iou_thrs:
                print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}')
                mean_ap, _ = eval_map(
                    results,
                    annotations,
                    scale_ranges=scale_ranges,
                    iou_thr=iou_thr,
                    dataset=self.CLASSES,
                    logger=logger)
                mean_aps.append(mean_ap)
                eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
            eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
        elif metric == 'recall':
            gt_bboxes = [ann['bboxes'] for ann in annotations]
            recalls = eval_recalls(
                gt_bboxes, results, proposal_nums, iou_thr, logger=logger)
            for i, num in enumerate(proposal_nums):
                for j, iou in enumerate(iou_thrs):
                    eval_results[f'recall@{num}@{iou}'] = recalls[i, j]
            if recalls.shape[1] > 1:
                ar = recalls.mean(axis=1)
                for i, num in enumerate(proposal_nums):
                    eval_results[f'AR@{num}'] = ar[i]
        return eval_results