Spaces:
Runtime error
Runtime error
File size: 36,776 Bytes
58f667f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
import torch
import torch.nn as nn
from mmcv.cnn import (Linear, build_activation_layer, build_norm_layer,
xavier_init)
from .builder import TRANSFORMER
class MultiheadAttention(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super(MultiheadAttention, self).__init__()
assert embed_dims % num_heads == 0, 'embed_dims must be ' \
f'divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self,
x,
key=None,
value=None,
residual=None,
query_pos=None,
key_pos=None,
attn_mask=None,
key_padding_mask=None):
"""Forward function for `MultiheadAttention`.
Args:
x (Tensor): The input query with shape [num_query, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
key (Tensor): The key tensor with shape [num_key, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
Default None. If None, the `query` will be used.
value (Tensor): The value tensor with same shape as `key`.
Same in `nn.MultiheadAttention.forward`. Default None.
If None, the `key` will be used.
residual (Tensor): The tensor used for addition, with the
same shape as `x`. Default None. If None, `x` will be used.
query_pos (Tensor): The positional encoding for query, with
the same shape as `x`. Default None. If not None, it will
be added to `x` before forward function.
key_pos (Tensor): The positional encoding for `key`, with the
same shape as `key`. Default None. If not None, it will
be added to `key` before forward function. If None, and
`query_pos` has the same shape as `key`, then `query_pos`
will be used for `key_pos`.
attn_mask (Tensor): ByteTensor mask with shape [num_query,
num_key]. Same in `nn.MultiheadAttention.forward`.
Default None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_key].
Same in `nn.MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
query = x
if key is None:
key = query
if value is None:
value = key
if residual is None:
residual = x
if key_pos is None:
if query_pos is not None and key is not None:
if query_pos.shape == key.shape:
key_pos = query_pos
if query_pos is not None:
query = query + query_pos
if key_pos is not None:
key = key + key_pos
out = self.attn(
query,
key,
value=value,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
return residual + self.dropout(out)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
class FFN(nn.Module):
"""Implements feed-forward networks (FFNs) with residual connection.
Args:
embed_dims (int): The feature dimension. Same as
`MultiheadAttention`.
feedforward_channels (int): The hidden dimension of FFNs.
num_fcs (int, optional): The number of fully-connected layers in
FFNs. Defaults to 2.
act_cfg (dict, optional): The activation config for FFNs.
dropout (float, optional): Probability of an element to be
zeroed. Default 0.0.
add_residual (bool, optional): Add resudual connection.
Defaults to True.
"""
def __init__(self,
embed_dims,
feedforward_channels,
num_fcs=2,
act_cfg=dict(type='ReLU', inplace=True),
dropout=0.0,
add_residual=True):
super(FFN, self).__init__()
assert num_fcs >= 2, 'num_fcs should be no less ' \
f'than 2. got {num_fcs}.'
self.embed_dims = embed_dims
self.feedforward_channels = feedforward_channels
self.num_fcs = num_fcs
self.act_cfg = act_cfg
self.dropout = dropout
self.activate = build_activation_layer(act_cfg)
layers = nn.ModuleList()
in_channels = embed_dims
for _ in range(num_fcs - 1):
layers.append(
nn.Sequential(
Linear(in_channels, feedforward_channels), self.activate,
nn.Dropout(dropout)))
in_channels = feedforward_channels
layers.append(Linear(feedforward_channels, embed_dims))
self.layers = nn.Sequential(*layers)
self.dropout = nn.Dropout(dropout)
self.add_residual = add_residual
def forward(self, x, residual=None):
"""Forward function for `FFN`."""
out = self.layers(x)
if not self.add_residual:
return out
if residual is None:
residual = x
return residual + self.dropout(out)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'num_fcs={self.num_fcs}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'add_residual={self.add_residual})'
return repr_str
class TransformerEncoderLayer(nn.Module):
"""Implements one encoder layer in DETR transformer.
Args:
embed_dims (int): The feature dimension. Same as `FFN`.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
dropout (float): Probability of an element to be zeroed. Default 0.0.
order (tuple[str]): The order for encoder layer. Valid examples are
('selfattn', 'norm', 'ffn', 'norm') and ('norm', 'selfattn',
'norm', 'ffn'). Default ('selfattn', 'norm', 'ffn', 'norm').
act_cfg (dict): The activation config for FFNs. Default ReLU.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization.
num_fcs (int): The number of fully-connected layers for FFNs.
Default 2.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
dropout=0.0,
order=('selfattn', 'norm', 'ffn', 'norm'),
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
num_fcs=2):
super(TransformerEncoderLayer, self).__init__()
assert isinstance(order, tuple) and len(order) == 4
assert set(order) == set(['selfattn', 'norm', 'ffn'])
self.embed_dims = embed_dims
self.num_heads = num_heads
self.feedforward_channels = feedforward_channels
self.dropout = dropout
self.order = order
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.num_fcs = num_fcs
self.pre_norm = order[0] == 'norm'
self.self_attn = MultiheadAttention(embed_dims, num_heads, dropout)
self.ffn = FFN(embed_dims, feedforward_channels, num_fcs, act_cfg,
dropout)
self.norms = nn.ModuleList()
self.norms.append(build_norm_layer(norm_cfg, embed_dims)[1])
self.norms.append(build_norm_layer(norm_cfg, embed_dims)[1])
def forward(self, x, pos=None, attn_mask=None, key_padding_mask=None):
"""Forward function for `TransformerEncoderLayer`.
Args:
x (Tensor): The input query with shape [num_key, bs,
embed_dims]. Same in `MultiheadAttention.forward`.
pos (Tensor): The positional encoding for query. Default None.
Same as `query_pos` in `MultiheadAttention.forward`.
attn_mask (Tensor): ByteTensor mask with shape [num_key,
num_key]. Same in `MultiheadAttention.forward`. Default None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_key].
Same in `MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_key, bs, embed_dims].
"""
norm_cnt = 0
inp_residual = x
for layer in self.order:
if layer == 'selfattn':
# self attention
query = key = value = x
x = self.self_attn(
query,
key,
value,
inp_residual if self.pre_norm else None,
query_pos=pos,
key_pos=pos,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask)
inp_residual = x
elif layer == 'norm':
x = self.norms[norm_cnt](x)
norm_cnt += 1
elif layer == 'ffn':
x = self.ffn(x, inp_residual if self.pre_norm else None)
return x
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'order={self.order}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg}, '
repr_str += f'num_fcs={self.num_fcs})'
return repr_str
class TransformerDecoderLayer(nn.Module):
"""Implements one decoder layer in DETR transformer.
Args:
embed_dims (int): The feature dimension. Same as
`TransformerEncoderLayer`.
num_heads (int): Parallel attention heads.
feedforward_channels (int): Same as `TransformerEncoderLayer`.
dropout (float): Same as `TransformerEncoderLayer`. Default 0.0.
order (tuple[str]): The order for decoder layer. Valid examples are
('selfattn', 'norm', 'multiheadattn', 'norm', 'ffn', 'norm') and
('norm', 'selfattn', 'norm', 'multiheadattn', 'norm', 'ffn').
Default the former.
act_cfg (dict): Same as `TransformerEncoderLayer`. Default ReLU.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization.
num_fcs (int): The number of fully-connected layers in FFNs.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
dropout=0.0,
order=('selfattn', 'norm', 'multiheadattn', 'norm', 'ffn',
'norm'),
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
num_fcs=2):
super(TransformerDecoderLayer, self).__init__()
assert isinstance(order, tuple) and len(order) == 6
assert set(order) == set(['selfattn', 'norm', 'multiheadattn', 'ffn'])
self.embed_dims = embed_dims
self.num_heads = num_heads
self.feedforward_channels = feedforward_channels
self.dropout = dropout
self.order = order
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.num_fcs = num_fcs
self.pre_norm = order[0] == 'norm'
self.self_attn = MultiheadAttention(embed_dims, num_heads, dropout)
self.multihead_attn = MultiheadAttention(embed_dims, num_heads,
dropout)
self.ffn = FFN(embed_dims, feedforward_channels, num_fcs, act_cfg,
dropout)
self.norms = nn.ModuleList()
# 3 norm layers in official DETR's TransformerDecoderLayer
for _ in range(3):
self.norms.append(build_norm_layer(norm_cfg, embed_dims)[1])
def forward(self,
x,
memory,
memory_pos=None,
query_pos=None,
memory_attn_mask=None,
target_attn_mask=None,
memory_key_padding_mask=None,
target_key_padding_mask=None):
"""Forward function for `TransformerDecoderLayer`.
Args:
x (Tensor): Input query with shape [num_query, bs, embed_dims].
memory (Tensor): Tensor got from `TransformerEncoder`, with shape
[num_key, bs, embed_dims].
memory_pos (Tensor): The positional encoding for `memory`. Default
None. Same as `key_pos` in `MultiheadAttention.forward`.
query_pos (Tensor): The positional encoding for `query`. Default
None. Same as `query_pos` in `MultiheadAttention.forward`.
memory_attn_mask (Tensor): ByteTensor mask for `memory`, with
shape [num_key, num_key]. Same as `attn_mask` in
`MultiheadAttention.forward`. Default None.
target_attn_mask (Tensor): ByteTensor mask for `x`, with shape
[num_query, num_query]. Same as `attn_mask` in
`MultiheadAttention.forward`. Default None.
memory_key_padding_mask (Tensor): ByteTensor for `memory`, with
shape [bs, num_key]. Same as `key_padding_mask` in
`MultiheadAttention.forward`. Default None.
target_key_padding_mask (Tensor): ByteTensor for `x`, with shape
[bs, num_query]. Same as `key_padding_mask` in
`MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
norm_cnt = 0
inp_residual = x
for layer in self.order:
if layer == 'selfattn':
query = key = value = x
x = self.self_attn(
query,
key,
value,
inp_residual if self.pre_norm else None,
query_pos,
key_pos=query_pos,
attn_mask=target_attn_mask,
key_padding_mask=target_key_padding_mask)
inp_residual = x
elif layer == 'norm':
x = self.norms[norm_cnt](x)
norm_cnt += 1
elif layer == 'multiheadattn':
query = x
key = value = memory
x = self.multihead_attn(
query,
key,
value,
inp_residual if self.pre_norm else None,
query_pos,
key_pos=memory_pos,
attn_mask=memory_attn_mask,
key_padding_mask=memory_key_padding_mask)
inp_residual = x
elif layer == 'ffn':
x = self.ffn(x, inp_residual if self.pre_norm else None)
return x
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'order={self.order}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg}, '
repr_str += f'num_fcs={self.num_fcs})'
return repr_str
class TransformerEncoder(nn.Module):
"""Implements the encoder in DETR transformer.
Args:
num_layers (int): The number of `TransformerEncoderLayer`.
embed_dims (int): Same as `TransformerEncoderLayer`.
num_heads (int): Same as `TransformerEncoderLayer`.
feedforward_channels (int): Same as `TransformerEncoderLayer`.
dropout (float): Same as `TransformerEncoderLayer`. Default 0.0.
order (tuple[str]): Same as `TransformerEncoderLayer`.
act_cfg (dict): Same as `TransformerEncoderLayer`. Default ReLU.
norm_cfg (dict): Same as `TransformerEncoderLayer`. Default
layer normalization.
num_fcs (int): Same as `TransformerEncoderLayer`. Default 2.
"""
def __init__(self,
num_layers,
embed_dims,
num_heads,
feedforward_channels,
dropout=0.0,
order=('selfattn', 'norm', 'ffn', 'norm'),
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
num_fcs=2):
super(TransformerEncoder, self).__init__()
assert isinstance(order, tuple) and len(order) == 4
assert set(order) == set(['selfattn', 'norm', 'ffn'])
self.num_layers = num_layers
self.embed_dims = embed_dims
self.num_heads = num_heads
self.feedforward_channels = feedforward_channels
self.dropout = dropout
self.order = order
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.num_fcs = num_fcs
self.pre_norm = order[0] == 'norm'
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
TransformerEncoderLayer(embed_dims, num_heads,
feedforward_channels, dropout, order,
act_cfg, norm_cfg, num_fcs))
self.norm = build_norm_layer(norm_cfg,
embed_dims)[1] if self.pre_norm else None
def forward(self, x, pos=None, attn_mask=None, key_padding_mask=None):
"""Forward function for `TransformerEncoder`.
Args:
x (Tensor): Input query. Same in `TransformerEncoderLayer.forward`.
pos (Tensor): Positional encoding for query. Default None.
Same in `TransformerEncoderLayer.forward`.
attn_mask (Tensor): ByteTensor attention mask. Default None.
Same in `TransformerEncoderLayer.forward`.
key_padding_mask (Tensor): Same in
`TransformerEncoderLayer.forward`. Default None.
Returns:
Tensor: Results with shape [num_key, bs, embed_dims].
"""
for layer in self.layers:
x = layer(x, pos, attn_mask, key_padding_mask)
if self.norm is not None:
x = self.norm(x)
return x
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(num_layers={self.num_layers}, '
repr_str += f'embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'order={self.order}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg}, '
repr_str += f'num_fcs={self.num_fcs})'
return repr_str
class TransformerDecoder(nn.Module):
"""Implements the decoder in DETR transformer.
Args:
num_layers (int): The number of `TransformerDecoderLayer`.
embed_dims (int): Same as `TransformerDecoderLayer`.
num_heads (int): Same as `TransformerDecoderLayer`.
feedforward_channels (int): Same as `TransformerDecoderLayer`.
dropout (float): Same as `TransformerDecoderLayer`. Default 0.0.
order (tuple[str]): Same as `TransformerDecoderLayer`.
act_cfg (dict): Same as `TransformerDecoderLayer`. Default ReLU.
norm_cfg (dict): Same as `TransformerDecoderLayer`. Default
layer normalization.
num_fcs (int): Same as `TransformerDecoderLayer`. Default 2.
"""
def __init__(self,
num_layers,
embed_dims,
num_heads,
feedforward_channels,
dropout=0.0,
order=('selfattn', 'norm', 'multiheadattn', 'norm', 'ffn',
'norm'),
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
num_fcs=2,
return_intermediate=False):
super(TransformerDecoder, self).__init__()
assert isinstance(order, tuple) and len(order) == 6
assert set(order) == set(['selfattn', 'norm', 'multiheadattn', 'ffn'])
self.num_layers = num_layers
self.embed_dims = embed_dims
self.num_heads = num_heads
self.feedforward_channels = feedforward_channels
self.dropout = dropout
self.order = order
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.num_fcs = num_fcs
self.return_intermediate = return_intermediate
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
TransformerDecoderLayer(embed_dims, num_heads,
feedforward_channels, dropout, order,
act_cfg, norm_cfg, num_fcs))
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
def forward(self,
x,
memory,
memory_pos=None,
query_pos=None,
memory_attn_mask=None,
target_attn_mask=None,
memory_key_padding_mask=None,
target_key_padding_mask=None):
"""Forward function for `TransformerDecoder`.
Args:
x (Tensor): Input query. Same in `TransformerDecoderLayer.forward`.
memory (Tensor): Same in `TransformerDecoderLayer.forward`.
memory_pos (Tensor): Same in `TransformerDecoderLayer.forward`.
Default None.
query_pos (Tensor): Same in `TransformerDecoderLayer.forward`.
Default None.
memory_attn_mask (Tensor): Same in
`TransformerDecoderLayer.forward`. Default None.
target_attn_mask (Tensor): Same in
`TransformerDecoderLayer.forward`. Default None.
memory_key_padding_mask (Tensor): Same in
`TransformerDecoderLayer.forward`. Default None.
target_key_padding_mask (Tensor): Same in
`TransformerDecoderLayer.forward`. Default None.
Returns:
Tensor: Results with shape [num_query, bs, embed_dims].
"""
intermediate = []
for layer in self.layers:
x = layer(x, memory, memory_pos, query_pos, memory_attn_mask,
target_attn_mask, memory_key_padding_mask,
target_key_padding_mask)
if self.return_intermediate:
intermediate.append(self.norm(x))
if self.norm is not None:
x = self.norm(x)
if self.return_intermediate:
intermediate.pop()
intermediate.append(x)
if self.return_intermediate:
return torch.stack(intermediate)
return x.unsqueeze(0)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(num_layers={self.num_layers}, '
repr_str += f'embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'order={self.order}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg}, '
repr_str += f'num_fcs={self.num_fcs}, '
repr_str += f'return_intermediate={self.return_intermediate})'
return repr_str
@TRANSFORMER.register_module()
class Transformer(nn.Module):
"""Implements the DETR transformer.
Following the official DETR implementation, this module copy-paste
from torch.nn.Transformer with modifications:
* positional encodings are passed in MultiheadAttention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
See `paper: End-to-End Object Detection with Transformers
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
num_encoder_layers (int): Number of `TransformerEncoderLayer`.
num_decoder_layers (int): Number of `TransformerDecoderLayer`.
feedforward_channels (int): The hidden dimension for FFNs used in both
encoder and decoder.
dropout (float): Probability of an element to be zeroed. Default 0.0.
act_cfg (dict): Activation config for FFNs used in both encoder
and decoder. Default ReLU.
norm_cfg (dict): Config dict for normalization used in both encoder
and decoder. Default layer normalization.
num_fcs (int): The number of fully-connected layers in FFNs, which is
used for both encoder and decoder.
pre_norm (bool): Whether the normalization layer is ordered
first in the encoder and decoder. Default False.
return_intermediate_dec (bool): Whether to return the intermediate
output from each TransformerDecoderLayer or only the last
TransformerDecoderLayer. Default False. If False, the returned
`hs` has shape [num_decoder_layers, bs, num_query, embed_dims].
If True, the returned `hs` will have shape [1, bs, num_query,
embed_dims].
"""
def __init__(self,
embed_dims=512,
num_heads=8,
num_encoder_layers=6,
num_decoder_layers=6,
feedforward_channels=2048,
dropout=0.0,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'),
num_fcs=2,
pre_norm=False,
return_intermediate_dec=False):
super(Transformer, self).__init__()
self.embed_dims = embed_dims
self.num_heads = num_heads
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.feedforward_channels = feedforward_channels
self.dropout = dropout
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.num_fcs = num_fcs
self.pre_norm = pre_norm
self.return_intermediate_dec = return_intermediate_dec
if self.pre_norm:
encoder_order = ('norm', 'selfattn', 'norm', 'ffn')
decoder_order = ('norm', 'selfattn', 'norm', 'multiheadattn',
'norm', 'ffn')
else:
encoder_order = ('selfattn', 'norm', 'ffn', 'norm')
decoder_order = ('selfattn', 'norm', 'multiheadattn', 'norm',
'ffn', 'norm')
self.encoder = TransformerEncoder(num_encoder_layers, embed_dims,
num_heads, feedforward_channels,
dropout, encoder_order, act_cfg,
norm_cfg, num_fcs)
self.decoder = TransformerDecoder(num_decoder_layers, embed_dims,
num_heads, feedforward_channels,
dropout, decoder_order, act_cfg,
norm_cfg, num_fcs,
return_intermediate_dec)
def init_weights(self, distribution='uniform'):
"""Initialize the transformer weights."""
# follow the official DETR to init parameters
for m in self.modules():
if hasattr(m, 'weight') and m.weight.dim() > 1:
xavier_init(m, distribution=distribution)
def forward(self, x, mask, query_embed, pos_embed):
"""Forward function for `Transformer`.
Args:
x (Tensor): Input query with shape [bs, c, h, w] where
c = embed_dims.
mask (Tensor): The key_padding_mask used for encoder and decoder,
with shape [bs, h, w].
query_embed (Tensor): The query embedding for decoder, with shape
[num_query, c].
pos_embed (Tensor): The positional encoding for encoder and
decoder, with the same shape as `x`.
Returns:
tuple[Tensor]: results of decoder containing the following tensor.
- out_dec: Output from decoder. If return_intermediate_dec \
is True output has shape [num_dec_layers, bs,
num_query, embed_dims], else has shape [1, bs, \
num_query, embed_dims].
- memory: Output results from encoder, with shape \
[bs, embed_dims, h, w].
"""
bs, c, h, w = x.shape
x = x.flatten(2).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c]
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(
1, bs, 1) # [num_query, dim] -> [num_query, bs, dim]
mask = mask.flatten(1) # [bs, h, w] -> [bs, h*w]
memory = self.encoder(
x, pos=pos_embed, attn_mask=None, key_padding_mask=mask)
target = torch.zeros_like(query_embed)
# out_dec: [num_layers, num_query, bs, dim]
out_dec = self.decoder(
target,
memory,
memory_pos=pos_embed,
query_pos=query_embed,
memory_attn_mask=None,
target_attn_mask=None,
memory_key_padding_mask=mask,
target_key_padding_mask=None)
out_dec = out_dec.transpose(1, 2)
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
return out_dec, memory
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'num_encoder_layers={self.num_encoder_layers}, '
repr_str += f'num_decoder_layers={self.num_decoder_layers}, '
repr_str += f'feedforward_channels={self.feedforward_channels}, '
repr_str += f'dropout={self.dropout}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg}, '
repr_str += f'num_fcs={self.num_fcs}, '
repr_str += f'pre_norm={self.pre_norm}, '
repr_str += f'return_intermediate_dec={self.return_intermediate_dec})'
return repr_str
@TRANSFORMER.register_module()
class DynamicConv(nn.Module):
"""Implements Dynamic Convolution.
This module generate parameters for each sample and
use bmm to implement 1*1 convolution. Code is modified
from the `official github repo <https://github.com/PeizeSun/
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ .
Args:
in_channels (int): The input feature channel.
Defaults to 256.
feat_channels (int): The inner feature channel.
Defaults to 64.
out_channels (int, optional): The output feature channel.
When not specified, it will be set to `in_channels`
by default
input_feat_shape (int): The shape of input feature.
Defaults to 7.
act_cfg (dict): The activation config for DynamicConv.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization.
"""
def __init__(self,
in_channels=256,
feat_channels=64,
out_channels=None,
input_feat_shape=7,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')):
super(DynamicConv, self).__init__()
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.input_feat_shape = input_feat_shape
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.in_channels * self.feat_channels
self.num_params_out = self.out_channels * self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1]
self.activation = build_activation_layer(act_cfg)
num_output = self.out_channels * input_feat_shape**2
self.fc_layer = nn.Linear(num_output, self.out_channels)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, param_feature, input_feature):
"""Forward function for `DynamicConv`.
Args:
param_feature (Tensor): The feature can be used
to generate the parameter, has shape
(num_all_proposals, in_channels).
input_feature (Tensor): Feature that
interact with parameters, has shape
(num_all_proposals, in_channels, H, W).
Returns:
Tensor: The output feature has shape
(num_all_proposals, out_channels).
"""
num_proposals = param_feature.size(0)
input_feature = input_feature.view(num_proposals, self.in_channels,
-1).permute(2, 0, 1)
input_feature = input_feature.permute(1, 0, 2)
parameters = self.dynamic_layer(param_feature)
param_in = parameters[:, :self.num_params_in].view(
-1, self.in_channels, self.feat_channels)
param_out = parameters[:, -self.num_params_out:].view(
-1, self.feat_channels, self.out_channels)
# input_feature has shape (num_all_proposals, H*W, in_channels)
# param_in has shape (num_all_proposals, in_channels, feat_channels)
# feature has shape (num_all_proposals, H*W, feat_channels)
features = torch.bmm(input_feature, param_in)
features = self.norm_in(features)
features = self.activation(features)
# param_out has shape (batch_size, feat_channels, out_channels)
features = torch.bmm(features, param_out)
features = self.norm_out(features)
features = self.activation(features)
features = features.flatten(1)
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(in_channels={self.in_channels}, '
repr_str += f'feat_channels={self.feat_channels}, '
repr_str += f'out_channels={self.out_channels_raw}, '
repr_str += f'input_feat_shape={self.input_feat_shape}, '
repr_str += f'act_cfg={self.act_cfg}, '
repr_str += f'norm_cfg={self.norm_cfg})'
return repr_str
|