Spaces:
Runtime error
Runtime error
File size: 11,062 Bytes
58f667f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import platform
import shutil
import time
import warnings
import torch
from torch.optim import Optimizer
import annotator.uniformer.mmcv as mmcv
from .base_runner import BaseRunner
from .builder import RUNNERS
from .checkpoint import save_checkpoint
from .hooks import IterTimerHook
from .utils import get_host_info
class IterLoader:
def __init__(self, dataloader):
self._dataloader = dataloader
self.iter_loader = iter(self._dataloader)
self._epoch = 0
@property
def epoch(self):
return self._epoch
def __next__(self):
try:
data = next(self.iter_loader)
except StopIteration:
self._epoch += 1
if hasattr(self._dataloader.sampler, 'set_epoch'):
self._dataloader.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self.iter_loader = iter(self._dataloader)
data = next(self.iter_loader)
return data
def __len__(self):
return len(self._dataloader)
@RUNNERS.register_module()
class IterBasedRunner(BaseRunner):
"""Iteration-based Runner.
This runner train models iteration by iteration.
"""
def train(self, data_loader, **kwargs):
self.model.train()
self.mode = 'train'
self.data_loader = data_loader
self._epoch = data_loader.epoch
data_batch = next(data_loader)
self.call_hook('before_train_iter')
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
if not isinstance(outputs, dict):
raise TypeError('model.train_step() must return a dict')
if 'log_vars' in outputs:
self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
self.outputs = outputs
self.call_hook('after_train_iter')
self._inner_iter += 1
self._iter += 1
@torch.no_grad()
def val(self, data_loader, **kwargs):
self.model.eval()
self.mode = 'val'
self.data_loader = data_loader
data_batch = next(data_loader)
self.call_hook('before_val_iter')
outputs = self.model.val_step(data_batch, **kwargs)
if not isinstance(outputs, dict):
raise TypeError('model.val_step() must return a dict')
if 'log_vars' in outputs:
self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
self.outputs = outputs
self.call_hook('after_val_iter')
self._inner_iter += 1
def run(self, data_loaders, workflow, max_iters=None, **kwargs):
"""Start running.
Args:
data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
and validation.
workflow (list[tuple]): A list of (phase, iters) to specify the
running order and iterations. E.g, [('train', 10000),
('val', 1000)] means running 10000 iterations for training and
1000 iterations for validation, iteratively.
"""
assert isinstance(data_loaders, list)
assert mmcv.is_list_of(workflow, tuple)
assert len(data_loaders) == len(workflow)
if max_iters is not None:
warnings.warn(
'setting max_iters in run is deprecated, '
'please set max_iters in runner_config', DeprecationWarning)
self._max_iters = max_iters
assert self._max_iters is not None, (
'max_iters must be specified during instantiation')
work_dir = self.work_dir if self.work_dir is not None else 'NONE'
self.logger.info('Start running, host: %s, work_dir: %s',
get_host_info(), work_dir)
self.logger.info('Hooks will be executed in the following order:\n%s',
self.get_hook_info())
self.logger.info('workflow: %s, max: %d iters', workflow,
self._max_iters)
self.call_hook('before_run')
iter_loaders = [IterLoader(x) for x in data_loaders]
self.call_hook('before_epoch')
while self.iter < self._max_iters:
for i, flow in enumerate(workflow):
self._inner_iter = 0
mode, iters = flow
if not isinstance(mode, str) or not hasattr(self, mode):
raise ValueError(
'runner has no method named "{}" to run a workflow'.
format(mode))
iter_runner = getattr(self, mode)
for _ in range(iters):
if mode == 'train' and self.iter >= self._max_iters:
break
iter_runner(iter_loaders[i], **kwargs)
time.sleep(1) # wait for some hooks like loggers to finish
self.call_hook('after_epoch')
self.call_hook('after_run')
def resume(self,
checkpoint,
resume_optimizer=True,
map_location='default'):
"""Resume model from checkpoint.
Args:
checkpoint (str): Checkpoint to resume from.
resume_optimizer (bool, optional): Whether resume the optimizer(s)
if the checkpoint file includes optimizer(s). Default to True.
map_location (str, optional): Same as :func:`torch.load`.
Default to 'default'.
"""
if map_location == 'default':
device_id = torch.cuda.current_device()
checkpoint = self.load_checkpoint(
checkpoint,
map_location=lambda storage, loc: storage.cuda(device_id))
else:
checkpoint = self.load_checkpoint(
checkpoint, map_location=map_location)
self._epoch = checkpoint['meta']['epoch']
self._iter = checkpoint['meta']['iter']
self._inner_iter = checkpoint['meta']['iter']
if 'optimizer' in checkpoint and resume_optimizer:
if isinstance(self.optimizer, Optimizer):
self.optimizer.load_state_dict(checkpoint['optimizer'])
elif isinstance(self.optimizer, dict):
for k in self.optimizer.keys():
self.optimizer[k].load_state_dict(
checkpoint['optimizer'][k])
else:
raise TypeError(
'Optimizer should be dict or torch.optim.Optimizer '
f'but got {type(self.optimizer)}')
self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')
def save_checkpoint(self,
out_dir,
filename_tmpl='iter_{}.pth',
meta=None,
save_optimizer=True,
create_symlink=True):
"""Save checkpoint to file.
Args:
out_dir (str): Directory to save checkpoint files.
filename_tmpl (str, optional): Checkpoint file template.
Defaults to 'iter_{}.pth'.
meta (dict, optional): Metadata to be saved in checkpoint.
Defaults to None.
save_optimizer (bool, optional): Whether save optimizer.
Defaults to True.
create_symlink (bool, optional): Whether create symlink to the
latest checkpoint file. Defaults to True.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(
f'meta should be a dict or None, but got {type(meta)}')
if self.meta is not None:
meta.update(self.meta)
# Note: meta.update(self.meta) should be done before
# meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise
# there will be problems with resumed checkpoints.
# More details in https://github.com/open-mmlab/mmcv/pull/1108
meta.update(epoch=self.epoch + 1, iter=self.iter)
filename = filename_tmpl.format(self.iter + 1)
filepath = osp.join(out_dir, filename)
optimizer = self.optimizer if save_optimizer else None
save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta)
# in some environments, `os.symlink` is not supported, you may need to
# set `create_symlink` to False
if create_symlink:
dst_file = osp.join(out_dir, 'latest.pth')
if platform.system() != 'Windows':
mmcv.symlink(filename, dst_file)
else:
shutil.copy(filepath, dst_file)
def register_training_hooks(self,
lr_config,
optimizer_config=None,
checkpoint_config=None,
log_config=None,
momentum_config=None,
custom_hooks_config=None):
"""Register default hooks for iter-based training.
Checkpoint hook, optimizer stepper hook and logger hooks will be set to
`by_epoch=False` by default.
Default hooks include:
+----------------------+-------------------------+
| Hooks | Priority |
+======================+=========================+
| LrUpdaterHook | VERY_HIGH (10) |
+----------------------+-------------------------+
| MomentumUpdaterHook | HIGH (30) |
+----------------------+-------------------------+
| OptimizerStepperHook | ABOVE_NORMAL (40) |
+----------------------+-------------------------+
| CheckpointSaverHook | NORMAL (50) |
+----------------------+-------------------------+
| IterTimerHook | LOW (70) |
+----------------------+-------------------------+
| LoggerHook(s) | VERY_LOW (90) |
+----------------------+-------------------------+
| CustomHook(s) | defaults to NORMAL (50) |
+----------------------+-------------------------+
If custom hooks have same priority with default hooks, custom hooks
will be triggered after default hooks.
"""
if checkpoint_config is not None:
checkpoint_config.setdefault('by_epoch', False)
if lr_config is not None:
lr_config.setdefault('by_epoch', False)
if log_config is not None:
for info in log_config['hooks']:
info.setdefault('by_epoch', False)
super(IterBasedRunner, self).register_training_hooks(
lr_config=lr_config,
momentum_config=momentum_config,
optimizer_config=optimizer_config,
checkpoint_config=checkpoint_config,
log_config=log_config,
timer_config=IterTimerHook(),
custom_hooks_config=custom_hooks_config)
|