stts1 / app.py
Afrinetwork7's picture
Update app.py
29850f3 verified
raw
history blame
11.8 kB
import logging
import math
import os
import tempfile
import time
from typing import Dict, Any
import yt_dlp as youtube_dl
from fastapi import FastAPI, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse
import jax.numpy as jnp
import numpy as np
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️")
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
checkpoint = "openai/whisper-large-v3"
BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.debug("Compiling forward call...")
start = time.time()
random_inputs = {
"input_features": np.ones(
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
)
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.debug(f"Compiled in {compile_time}s")
def timeit(func):
async def wrapper(*args, **kwargs):
start_time = time.time()
result = await func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
if isinstance(result, dict):
result['total_execution_time'] = execution_time
else:
result = {'result': result, 'total_execution_time': execution_time}
return result
return wrapper
@app.post("/transcribe_audio")
@timeit
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False) -> Dict[str, Any]:
logger.debug("Starting transcribe_chunked_audio function")
logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}")
logger.debug("Checking for audio file...")
if not audio_file:
logger.warning("No audio file")
raise HTTPException(status_code=400, detail="No audio file submitted!")
logger.debug(f"Audio file received: {audio_file.filename}")
try:
# Read the file content
file_content = await audio_file.read()
file_size = len(file_content)
file_size_mb = file_size / (1024 * 1024)
logger.debug(f"File size: {file_size} bytes ({file_size_mb:.2f}MB)")
except Exception as e:
logger.error(f"Error reading file: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error reading file: {str(e)}")
if file_size_mb > FILE_LIMIT_MB:
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB")
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
try:
logger.debug("Performing ffmpeg read on audio file")
inputs = ffmpeg_read(file_content, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.debug("ffmpeg read completed successfully")
except Exception as e:
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}")
logger.debug("Calling tqdm_generate to transcribe audio")
try:
text, runtime, timing_info = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s")
except Exception as e:
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}")
logger.debug("Transcribe_chunked_audio function completed successfully")
return {"text": text, "runtime": runtime, "timing_info": timing_info}
@app.post("/transcribe_youtube")
@timeit
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False) -> Dict[str, Any]:
logger.debug("Loading YouTube file...")
try:
html_embed_str = _return_yt_html_embed(yt_url)
except Exception as e:
logger.error("Error generating YouTube HTML embed:", exc_info=True)
raise HTTPException(status_code=500, detail="Error generating YouTube HTML embed")
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
try:
logger.debug("Downloading YouTube audio...")
download_yt_audio(yt_url, filepath)
except Exception as e:
logger.error("Error downloading YouTube audio:", exc_info=True)
raise HTTPException(status_code=500, detail="Error downloading YouTube audio")
try:
logger.debug(f"Opening downloaded audio file: {filepath}")
with open(filepath, "rb") as f:
inputs = f.read()
except Exception as e:
logger.error("Error reading downloaded audio file:", exc_info=True)
raise HTTPException(status_code=500, detail="Error reading downloaded audio file")
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.debug("Done loading YouTube file")
try:
logger.debug("Calling tqdm_generate to transcribe YouTube audio")
text, runtime, timing_info = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
except Exception as e:
logger.error("Error transcribing YouTube audio:", exc_info=True)
raise HTTPException(status_code=500, detail="Error transcribing YouTube audio")
return {"html_embed": html_embed_str, "text": text, "runtime": runtime, "timing_info": timing_info}
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
start_time = time.time()
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}")
inputs_len = inputs["array"].shape[0]
logger.debug(f"Input array length: {inputs_len}")
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / BATCH_SIZE)
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}")
logger.debug("Preprocessing audio for inference")
try:
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
logger.debug("Preprocessing completed successfully")
except Exception as e:
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True)
raise
model_outputs = []
transcription_start_time = time.time()
logger.debug("Starting transcription...")
try:
for i, batch in enumerate(dataloader):
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples")
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)
model_outputs.append(batch_output)
logger.debug(f"Batch {i+1} processed successfully")
except Exception as e:
logger.error(f"Error during batch processing: {str(e)}", exc_info=True)
raise
transcription_runtime = time.time() - transcription_start_time
logger.debug(f"Transcription completed in {transcription_runtime:.2f}s")
logger.debug("Post-processing transcription results")
try:
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
logger.debug("Post-processing completed successfully")
except Exception as e:
logger.error(f"Error in post-processing: {str(e)}", exc_info=True)
raise
text = post_processed["text"]
if return_timestamps:
timestamps = post_processed.get("chunks")
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
total_processing_time = time.time() - start_time
logger.debug("tqdm_generate function completed successfully")
return text, transcription_runtime, {
"transcription_time": transcription_runtime,
"total_processing_time": total_processing_time
}
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
logger.debug(f"Extracting info for YouTube URL: {yt_url}")
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
logger.error("Error extracting YouTube info:", exc_info=True)
raise HTTPException(status_code=400, detail=str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
logger.debug(f"Downloading YouTube audio to {filename}")
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
logger.error("Error downloading YouTube audio:", exc_info=True)
raise HTTPException(status_code=400, detail=str(err))
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds