stts1 / app.py
Afrinetwork7's picture
Update app.py
2300584 verified
raw
history blame
7.87 kB
import logging
import math
import time
import base64
import io
from typing import Dict, Any
from functools import wraps
from fastapi import FastAPI, Depends, HTTPException
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
import jax.numpy as jnp
import numpy as np
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️")
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
checkpoint = "openai/whisper-large-v3"
BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.debug("Compiling forward call...")
start = time.time()
random_inputs = {
"input_features": np.ones(
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
)
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.debug(f"Compiled in {compile_time}s")
class TranscribeAudioRequest(BaseModel):
audio_base64: str
task: str = "transcribe"
return_timestamps: bool = False
def timeit(func):
@wraps(func)
async def wrapper(*args, **kwargs):
start_time = time.time()
result = await func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
if isinstance(result, dict):
result['total_execution_time'] = execution_time
else:
result = {'result': result, 'total_execution_time': execution_time}
return result
return wrapper
@app.post("/transcribe_audio")
@timeit
async def transcribe_chunked_audio(
request: TranscribeAudioRequest
) -> Dict[str, Any]:
logger.debug("Starting transcribe_chunked_audio function")
logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}")
try:
# Decode base64 audio data
audio_data = base64.b64decode(request.audio_base64)
file_size = len(audio_data)
file_size_mb = file_size / (1024 * 1024)
logger.debug(f"Decoded audio data size: {file_size} bytes ({file_size_mb:.2f}MB)")
except Exception as e:
logger.error(f"Error decoding base64 audio data: {str(e)}", exc_info=True)
raise HTTPException(status_code=400, detail=f"Error decoding base64 audio data: {str(e)}")
if file_size_mb > FILE_LIMIT_MB:
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB")
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
try:
logger.debug("Performing ffmpeg read on audio data")
inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.debug("ffmpeg read completed successfully")
except Exception as e:
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}")
logger.debug("Calling tqdm_generate to transcribe audio")
try:
text, runtime, timing_info = tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s")
except Exception as e:
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}")
logger.debug("Transcribe_chunked_audio function completed successfully")
return jsonable_encoder({
"text": text,
"runtime": runtime,
"timing_info": timing_info
})
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
start_time = time.time()
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}")
inputs_len = inputs["array"].shape[0]
logger.debug(f"Input array length: {inputs_len}")
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / BATCH_SIZE)
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}")
logger.debug("Preprocessing audio for inference")
try:
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
logger.debug("Preprocessing completed successfully")
except Exception as e:
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True)
raise
model_outputs = []
transcription_start_time = time.time()
logger.debug("Starting transcription...")
try:
for i, batch in enumerate(dataloader):
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples")
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)
model_outputs.append(batch_output)
logger.debug(f"Batch {i+1} processed successfully")
except Exception as e:
logger.error(f"Error during batch processing: {str(e)}", exc_info=True)
raise
transcription_runtime = time.time() - transcription_start_time
logger.debug(f"Transcription completed in {transcription_runtime:.2f}s")
logger.debug("Post-processing transcription results")
try:
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
logger.debug("Post-processing completed successfully")
except Exception as e:
logger.error(f"Error in post-processing: {str(e)}", exc_info=True)
raise
text = post_processed["text"]
if return_timestamps:
timestamps = post_processed.get("chunks")
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
total_processing_time = time.time() - start_time
logger.debug("tqdm_generate function completed successfully")
return text, transcription_runtime, {
"transcription_time": transcription_runtime,
"total_processing_time": total_processing_time
}
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds