Spaces:
Runtime error
Runtime error
Afrinetwork7
commited on
Commit
•
2300584
1
Parent(s):
fbec879
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
import logging
|
2 |
import math
|
3 |
-
import os
|
4 |
-
import tempfile
|
5 |
import time
|
|
|
|
|
6 |
from typing import Dict, Any
|
7 |
from functools import wraps
|
8 |
|
9 |
-
import
|
10 |
-
from fastapi import FastAPI, File, UploadFile, Depends, HTTPException
|
11 |
-
from fastapi.responses import HTMLResponse
|
12 |
from fastapi.encoders import jsonable_encoder
|
13 |
from pydantic import BaseModel
|
14 |
import jax.numpy as jnp
|
15 |
import numpy as np
|
16 |
-
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
|
17 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
18 |
from whisper_jax import FlaxWhisperPipline
|
19 |
|
@@ -33,7 +30,6 @@ BATCH_SIZE = 32
|
|
33 |
CHUNK_LENGTH_S = 30
|
34 |
NUM_PROC = 32
|
35 |
FILE_LIMIT_MB = 10000
|
36 |
-
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
|
37 |
|
38 |
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
|
39 |
stride_length_s = CHUNK_LENGTH_S / 6
|
@@ -54,11 +50,7 @@ compile_time = time.time() - start
|
|
54 |
logger.debug(f"Compiled in {compile_time}s")
|
55 |
|
56 |
class TranscribeAudioRequest(BaseModel):
|
57 |
-
|
58 |
-
return_timestamps: bool = False
|
59 |
-
|
60 |
-
class TranscribeYouTubeRequest(BaseModel):
|
61 |
-
yt_url: str
|
62 |
task: str = "transcribe"
|
63 |
return_timestamps: bool = False
|
64 |
|
@@ -79,41 +71,33 @@ def timeit(func):
|
|
79 |
@app.post("/transcribe_audio")
|
80 |
@timeit
|
81 |
async def transcribe_chunked_audio(
|
82 |
-
|
83 |
-
request: TranscribeAudioRequest = Depends()
|
84 |
) -> Dict[str, Any]:
|
85 |
logger.debug("Starting transcribe_chunked_audio function")
|
86 |
logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}")
|
87 |
|
88 |
-
logger.debug("Checking for audio file...")
|
89 |
-
if not audio_file:
|
90 |
-
logger.warning("No audio file")
|
91 |
-
raise HTTPException(status_code=400, detail="No audio file submitted!")
|
92 |
-
|
93 |
-
logger.debug(f"Audio file received: {audio_file.filename}")
|
94 |
-
|
95 |
try:
|
96 |
-
#
|
97 |
-
|
98 |
-
file_size = len(
|
99 |
file_size_mb = file_size / (1024 * 1024)
|
100 |
-
logger.debug(f"
|
101 |
except Exception as e:
|
102 |
-
logger.error(f"Error
|
103 |
-
raise HTTPException(status_code=
|
104 |
|
105 |
if file_size_mb > FILE_LIMIT_MB:
|
106 |
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB")
|
107 |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
|
108 |
|
109 |
try:
|
110 |
-
logger.debug("Performing ffmpeg read on audio
|
111 |
-
inputs = ffmpeg_read(
|
112 |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
113 |
logger.debug("ffmpeg read completed successfully")
|
114 |
except Exception as e:
|
115 |
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True)
|
116 |
-
raise HTTPException(status_code=500, detail=f"Error processing audio
|
117 |
|
118 |
logger.debug("Calling tqdm_generate to transcribe audio")
|
119 |
try:
|
@@ -130,51 +114,6 @@ async def transcribe_chunked_audio(
|
|
130 |
"timing_info": timing_info
|
131 |
})
|
132 |
|
133 |
-
@app.post("/transcribe_youtube")
|
134 |
-
@timeit
|
135 |
-
async def transcribe_youtube(request: TranscribeYouTubeRequest) -> Dict[str, Any]:
|
136 |
-
logger.debug("Loading YouTube file...")
|
137 |
-
try:
|
138 |
-
html_embed_str = _return_yt_html_embed(request.yt_url)
|
139 |
-
except Exception as e:
|
140 |
-
logger.error("Error generating YouTube HTML embed:", exc_info=True)
|
141 |
-
raise HTTPException(status_code=500, detail="Error generating YouTube HTML embed")
|
142 |
-
|
143 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
144 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
145 |
-
try:
|
146 |
-
logger.debug("Downloading YouTube audio...")
|
147 |
-
download_yt_audio(request.yt_url, filepath)
|
148 |
-
except Exception as e:
|
149 |
-
logger.error("Error downloading YouTube audio:", exc_info=True)
|
150 |
-
raise HTTPException(status_code=500, detail="Error downloading YouTube audio")
|
151 |
-
|
152 |
-
try:
|
153 |
-
logger.debug(f"Opening downloaded audio file: {filepath}")
|
154 |
-
with open(filepath, "rb") as f:
|
155 |
-
inputs = f.read()
|
156 |
-
except Exception as e:
|
157 |
-
logger.error("Error reading downloaded audio file:", exc_info=True)
|
158 |
-
raise HTTPException(status_code=500, detail="Error reading downloaded audio file")
|
159 |
-
|
160 |
-
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
|
161 |
-
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
162 |
-
logger.debug("Done loading YouTube file")
|
163 |
-
|
164 |
-
try:
|
165 |
-
logger.debug("Calling tqdm_generate to transcribe YouTube audio")
|
166 |
-
text, runtime, timing_info = tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
|
167 |
-
except Exception as e:
|
168 |
-
logger.error("Error transcribing YouTube audio:", exc_info=True)
|
169 |
-
raise HTTPException(status_code=500, detail="Error transcribing YouTube audio")
|
170 |
-
|
171 |
-
return jsonable_encoder({
|
172 |
-
"html_embed": html_embed_str,
|
173 |
-
"text": text,
|
174 |
-
"runtime": runtime,
|
175 |
-
"timing_info": timing_info
|
176 |
-
})
|
177 |
-
|
178 |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
179 |
start_time = time.time()
|
180 |
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}")
|
@@ -236,46 +175,6 @@ def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
|
236 |
"total_processing_time": total_processing_time
|
237 |
}
|
238 |
|
239 |
-
def _return_yt_html_embed(yt_url):
|
240 |
-
video_id = yt_url.split("?v=")[-1]
|
241 |
-
HTML_str = (
|
242 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
243 |
-
" </center>"
|
244 |
-
)
|
245 |
-
return HTML_str
|
246 |
-
|
247 |
-
def download_yt_audio(yt_url, filename):
|
248 |
-
info_loader = youtube_dl.YoutubeDL()
|
249 |
-
try:
|
250 |
-
logger.debug(f"Extracting info for YouTube URL: {yt_url}")
|
251 |
-
info = info_loader.extract_info(yt_url, download=False)
|
252 |
-
except youtube_dl.utils.DownloadError as err:
|
253 |
-
logger.error("Error extracting YouTube info:", exc_info=True)
|
254 |
-
raise HTTPException(status_code=400, detail=str(err))
|
255 |
-
|
256 |
-
file_length = info["duration_string"]
|
257 |
-
file_h_m_s = file_length.split(":")
|
258 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
259 |
-
if len(file_h_m_s) == 1:
|
260 |
-
file_h_m_s.insert(0, 0)
|
261 |
-
if len(file_h_m_s) == 2:
|
262 |
-
file_h_m_s.insert(0, 0)
|
263 |
-
|
264 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
265 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
266 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
267 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
268 |
-
raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
269 |
-
|
270 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
271 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
272 |
-
try:
|
273 |
-
logger.debug(f"Downloading YouTube audio to {filename}")
|
274 |
-
ydl.download([yt_url])
|
275 |
-
except youtube_dl.utils.ExtractorError as err:
|
276 |
-
logger.error("Error downloading YouTube audio:", exc_info=True)
|
277 |
-
raise HTTPException(status_code=400, detail=str(err))
|
278 |
-
|
279 |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
280 |
if seconds is not None:
|
281 |
milliseconds = round(seconds * 1000.0)
|
|
|
1 |
import logging
|
2 |
import math
|
|
|
|
|
3 |
import time
|
4 |
+
import base64
|
5 |
+
import io
|
6 |
from typing import Dict, Any
|
7 |
from functools import wraps
|
8 |
|
9 |
+
from fastapi import FastAPI, Depends, HTTPException
|
|
|
|
|
10 |
from fastapi.encoders import jsonable_encoder
|
11 |
from pydantic import BaseModel
|
12 |
import jax.numpy as jnp
|
13 |
import numpy as np
|
|
|
14 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
15 |
from whisper_jax import FlaxWhisperPipline
|
16 |
|
|
|
30 |
CHUNK_LENGTH_S = 30
|
31 |
NUM_PROC = 32
|
32 |
FILE_LIMIT_MB = 10000
|
|
|
33 |
|
34 |
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
|
35 |
stride_length_s = CHUNK_LENGTH_S / 6
|
|
|
50 |
logger.debug(f"Compiled in {compile_time}s")
|
51 |
|
52 |
class TranscribeAudioRequest(BaseModel):
|
53 |
+
audio_base64: str
|
|
|
|
|
|
|
|
|
54 |
task: str = "transcribe"
|
55 |
return_timestamps: bool = False
|
56 |
|
|
|
71 |
@app.post("/transcribe_audio")
|
72 |
@timeit
|
73 |
async def transcribe_chunked_audio(
|
74 |
+
request: TranscribeAudioRequest
|
|
|
75 |
) -> Dict[str, Any]:
|
76 |
logger.debug("Starting transcribe_chunked_audio function")
|
77 |
logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}")
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
+
# Decode base64 audio data
|
81 |
+
audio_data = base64.b64decode(request.audio_base64)
|
82 |
+
file_size = len(audio_data)
|
83 |
file_size_mb = file_size / (1024 * 1024)
|
84 |
+
logger.debug(f"Decoded audio data size: {file_size} bytes ({file_size_mb:.2f}MB)")
|
85 |
except Exception as e:
|
86 |
+
logger.error(f"Error decoding base64 audio data: {str(e)}", exc_info=True)
|
87 |
+
raise HTTPException(status_code=400, detail=f"Error decoding base64 audio data: {str(e)}")
|
88 |
|
89 |
if file_size_mb > FILE_LIMIT_MB:
|
90 |
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB")
|
91 |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
|
92 |
|
93 |
try:
|
94 |
+
logger.debug("Performing ffmpeg read on audio data")
|
95 |
+
inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate)
|
96 |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
97 |
logger.debug("ffmpeg read completed successfully")
|
98 |
except Exception as e:
|
99 |
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True)
|
100 |
+
raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}")
|
101 |
|
102 |
logger.debug("Calling tqdm_generate to transcribe audio")
|
103 |
try:
|
|
|
114 |
"timing_info": timing_info
|
115 |
})
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
118 |
start_time = time.time()
|
119 |
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}")
|
|
|
175 |
"total_processing_time": total_processing_time
|
176 |
}
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
179 |
if seconds is not None:
|
180 |
milliseconds = round(seconds * 1000.0)
|