File size: 9,263 Bytes
f5fbd23
 
d8bea64
f5fbd23
9d6df4b
 
 
 
 
 
 
 
5b475af
9d6df4b
 
d8bea64
 
9d6df4b
d8bea64
9d6df4b
 
d8bea64
 
 
 
 
 
 
 
 
9d6df4b
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
 
 
 
9d6df4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
 
 
9d6df4b
 
 
d8bea64
 
9d6df4b
 
 
 
 
 
 
5b475af
 
 
9d6df4b
 
 
 
 
 
 
 
 
 
d8bea64
 
9d6df4b
 
 
 
 
 
 
 
 
 
 
 
 
f5fbd23
 
 
 
 
 
5b475af
 
 
 
 
 
f5fbd23
 
 
 
5b475af
 
 
 
 
 
 
 
 
 
f5fbd23
 
5b475af
f5fbd23
5b475af
f5fbd23
 
 
 
 
9d6df4b
f5fbd23
 
 
 
 
d8bea64
f5fbd23
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
f5fbd23
 
 
d8bea64
 
 
 
 
 
f5fbd23
 
9d6df4b
f5fbd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
f5fbd23
 
 
 
 
 
 
 
 
 
 
d8bea64
f5fbd23
 
 
 
9d6df4b
f5fbd23
 
 
9d6df4b
f5fbd23
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
import faiss
import pickle
from typing import List, Dict, Tuple
import logging
import gradio as gr
import tempfile
import os
import shutil

class VideoRAGTool:
    def __init__(self, clip_model_name: str = "openai/clip-vit-base-patch32",
                 blip_model_name: str = "Salesforce/blip-image-captioning-base"):
        """
        Initialize the Video RAG Tool with CLIP and BLIP models for frame analysis and captioning.
        """
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Initialize CLIP for frame retrieval
        self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
        self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
        
        # Initialize BLIP for image captioning
        self.blip_processor = BlipProcessor.from_pretrained(blip_model_name)
        self.blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name).to(self.device)
        
        self.frame_index = None
        self.frame_data = []
        self.logger = self._setup_logger()

    def _setup_logger(self) -> logging.Logger:
        logger = logging.getLogger('VideoRAGTool')
        logger.setLevel(logging.INFO)
        handler = logging.StreamHandler()
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        handler.setFormatter(formatter)
        logger.addHandler(handler)
        return logger

    def generate_caption(self, image: Image.Image) -> str:
        """Generate a description for the given image using BLIP."""
        inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
        out = self.blip_model.generate(**inputs)
        caption = self.blip_processor.decode(out[0], skip_special_tokens=True)
        return caption

    def process_video(self, video_path: str, frame_interval: int = 30) -> None:
        """Process video file and extract features from frames."""
        self.logger.info(f"Processing video: {video_path}")
        cap = cv2.VideoCapture(video_path)
        frame_count = 0
        features_list = []
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
                
            if frame_count % frame_interval == 0:
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                image = Image.fromarray(frame_rgb)
                
                # Generate caption for the frame
                caption = self.generate_caption(image)
                
                # Process frame with CLIP
                inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
                image_features = self.clip_model.get_image_features(**inputs)
                
                self.frame_data.append({
                    'frame_number': frame_count,
                    'timestamp': frame_count / cap.get(cv2.CAP_PROP_FPS),
                    'caption': caption
                })
                features_list.append(image_features.cpu().detach().numpy())
            
            frame_count += 1
            
        cap.release()
        
        if not features_list:
            raise ValueError("No frames were processed from the video")
            
        features_array = np.vstack(features_list)
        self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
        self.frame_index.add(features_array)
        
        self.logger.info(f"Processed {len(self.frame_data)} frames from video")

    def query_video(self, query_text: str, k: int = 5) -> List[Dict]:
        """Query the video using natural language and return relevant frames."""
        self.logger.info(f"Processing query: {query_text}")
        
        inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
        text_features = self.clip_model.get_text_features(**inputs)
        
        distances, indices = self.frame_index.search(
            text_features.cpu().detach().numpy(), 
            k
        )
        
        results = []
        for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
            frame_info = self.frame_data[idx].copy()
            frame_info['relevance_score'] = float(1 / (1 + distance))
            results.append(frame_info)
            
        return results

class VideoRAGApp:
    def __init__(self):
        self.rag_tool = VideoRAGTool()
        self.current_video_path = None
        self.processed = False
        self.temp_dir = tempfile.mkdtemp()

    def __del__(self):
        """Cleanup temporary files on deletion"""
        if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
            shutil.rmtree(self.temp_dir, ignore_errors=True)

    def process_video(self, video_file):
        """Process uploaded video and return status message"""
        try:
            if video_file is None:
                return "Please upload a video first."

            video_path = video_file.name
            temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
            shutil.copy2(video_path, temp_video_path)
            
            self.current_video_path = temp_video_path
            
            self.rag_tool.process_video(self.current_video_path)
            self.processed = True
            return "Video processed successfully! You can now ask questions about the video."
            
        except Exception as e:
            self.processed = False
            return f"Error processing video: {str(e)}"

    def query_video(self, query_text):
        """Query the video and return relevant frames with descriptions"""
        if not self.processed:
            return None, "Please process a video first."
        
        try:
            results = self.rag_tool.query_video(query_text, k=4)
            
            frames = []
            descriptions = []
            
            cap = cv2.VideoCapture(self.current_video_path)
            
            for result in results:
                frame_number = result['frame_number']
                cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
                ret, frame = cap.read()
                
                if ret:
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frames.append(Image.fromarray(frame_rgb))
                    
                    description = f"Timestamp: {result['timestamp']:.2f}s\n"
                    description += f"Scene Description: {result['caption']}\n"
                    description += f"Relevance Score: {result['relevance_score']:.2f}"
                    descriptions.append(description)
            
            cap.release()
            
            # Combine all descriptions with frame numbers
            combined_description = "\n\nFrame Analysis:\n\n"
            for i, desc in enumerate(descriptions, 1):
                combined_description += f"Frame {i}:\n{desc}\n\n"
            
            return frames, combined_description
            
        except Exception as e:
            return None, f"Error querying video: {str(e)}"

    def create_interface(self):
        """Create and return Gradio interface"""
        with gr.Blocks(title="Video Chat RAG") as interface:
            gr.Markdown("# Video Chat RAG")
            gr.Markdown("Upload a video and ask questions about its content!")
            
            with gr.Row():
                video_input = gr.File(
                    label="Upload Video",
                    file_types=["video"],
                )
                process_button = gr.Button("Process Video")
            
            status_output = gr.Textbox(
                label="Status",
                interactive=False
            )
            
            with gr.Row():
                query_input = gr.Textbox(
                    label="Ask about the video",
                    placeholder="What's happening in the video?"
                )
                query_button = gr.Button("Search")
            
            with gr.Row():
                gallery = gr.Gallery(
                    label="Retrieved Frames",
                    show_label=True,
                    elem_id="gallery",
                    columns=[2],
                    rows=[2],
                    height="auto"
                )
                
            descriptions = gr.Textbox(
                label="Scene Descriptions",
                interactive=False,
                lines=10
            )
            
            process_button.click(
                fn=self.process_video,
                inputs=[video_input],
                outputs=[status_output]
            )
            
            query_button.click(
                fn=self.query_video,
                inputs=[query_input],
                outputs=[gallery, descriptions]
            )
        
        return interface

# Initialize and create the interface
app = VideoRAGApp()
interface = app.create_interface()

# Launch the app
if __name__ == "__main__":
    interface.launch()