import os import base64 import gradio as gr from PIL import Image, ImageOps import io import json from groq import Groq import logging import cv2 import numpy as np import traceback from datetime import datetime import tempfile # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load environment variables GROQ_API_KEY = os.environ.get("GROQ_API_KEY") if not GROQ_API_KEY: logger.error("GROQ_API_KEY is not set in environment variables") raise ValueError("GROQ_API_KEY is not set") # Initialize Groq client client = Groq(api_key=GROQ_API_KEY) def encode_image(image): try: if isinstance(image, str): # If image is a file path with open(image, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') elif isinstance(image, Image.Image): # If image is a PIL Image buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') elif isinstance(image, np.ndarray): # If image is a numpy array (from video) is_success, buffer = cv2.imencode(".png", image) if is_success: return base64.b64encode(buffer).decode('utf-8') else: raise ValueError(f"Unsupported image type: {type(image)}") except Exception as e: logger.error(f"Error encoding image: {str(e)}") raise def resize_image(image, max_size=(800, 800)): """Resize image to avoid exceeding the API size limits.""" try: image.thumbnail(max_size, Image.Resampling.LANCZOS) # Use LANCZOS resampling for better quality return image except Exception as e: logger.error(f"Error resizing image: {str(e)}") raise def extract_frames_from_video(video, frame_points=[0, 0.5, 1], max_size=(800, 800)): """Extract key frames from the video at specific time points.""" cap = cv2.VideoCapture(video) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) duration = frame_count / fps frames = [] for time_point in frame_points: cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000) ret, frame = cap.read() if ret: resized_frame = cv2.resize(frame, max_size) frames.append(resized_frame) cap.release() return frames def analyze_file(file): """Analyze a single file (image or video)""" try: file_type = file.name.split('.')[-1].lower() if file_type in ['jpg', 'jpeg', 'png', 'bmp']: return analyze_image(file) elif file_type in ['mp4', 'avi', 'mov', 'webm']: return analyze_video(file) else: return "Unsupported file type. Please upload an image or video file." except Exception as e: logger.error(f"Error analyzing file: {str(e)}") return f"Error analyzing file: {str(e)}" def analyze_image(image_file): image = Image.open(image_file.name) resized_image = resize_image(image) image_data_url = f"data:image/png;base64,{encode_image(resized_image)}" instruction = ("You are an AI assistant specialized in analyzing images for safety issues. " "Your task is first to explain what you see in the image and determine if the image shows a construction site. " "If it does, identify any safety issues or hazards, categorize them, and provide a detailed description, " "and suggest steps to resolve them. If it's not a construction site, simply state that") messages = [ { "role": "user", "content": [ { "type": "text", "text": f"{instruction}\n\nAnalyze this image. First, determine if it's a construction site. If it is, explain the image in detail, focusing on safety aspects. If it's not, briefly describe what you see." }, { "type": "image_url", "image_url": { "url": image_data_url } } ] } ] completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=1000, top_p=1, stream=False, stop=None ) return completion.choices[0].message.content def analyze_video(video_file): frames = extract_frames_from_video(video_file.name) results = [] instruction = ("You are an AI assistant specialized in analyzing images for safety issues. " "Your task is first to explain what you see in the image and determine if the image shows a construction site. " "If it does, identify any safety issues or hazards, categorize them, and provide a detailed description, " "and suggest steps to resolve them. If it's not a construction site, simply state that") for i, frame in enumerate(frames): image_data_url = f"data:image/png;base64,{encode_image(frame)}" messages = [ { "role": "user", "content": [ { "type": "text", "text": f"{instruction}\n\nAnalyze this frame from a video (Frame {i+1}/{len(frames)}). First, explain the video and then determine if it's a construction site. If it is, explain what you observe, focusing on safety aspects. If it's not, briefly describe what you see." }, { "type": "image_url", "image_url": { "url": image_data_url } } ] } ] completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=1000, top_p=1, stream=False, stop=None ) results.append(f"Frame {i+1} analysis:\n{completion.choices[0].message.content}\n\n") return "\n".join(results) def chat_about_image(message, chat_history): try: # Prepare the conversation history for the API messages = [ {"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."}, ] # Add chat history to messages for human, ai in chat_history: if human: messages.append({"role": "user", "content": human}) if ai: messages.append({"role": "assistant", "content": ai}) # Add the new user message messages.append({"role": "user", "content": message}) # Make API call completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=500, top_p=1, stream=False, stop=None ) response = completion.choices[0].message.content chat_history.append((message, response)) return "", chat_history except Exception as e: logger.error(f"Error during chat: {str(e)}") return "", chat_history + [(message, f"Error: {str(e)}")] def generate_summary_report(chat_history): """ Generate a summary report from the chat history. """ report = "Construction Site Safety Analysis Report\n" report += "=" * 40 + "\n" report += f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n" for i, (user, ai) in enumerate(chat_history, 1): if user: report += f"Query {i}:\n{user}\n\n" if ai: report += f"Analysis {i}:\n{ai}\n\n" report += "-" * 40 + "\n" return report def download_report(chat_history): """ Generate and provide a download link for the summary report. """ report = generate_summary_report(chat_history) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"safety_analysis_report_{timestamp}.txt" # Create a temporary file with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: temp_file.write(report) temp_file_path = temp_file.name return temp_file_path # Custom CSS for improved styling custom_css = """ .container { max-width: 1200px; margin: auto; padding-top: 1.5rem; } .header { text-align: center; margin-bottom: 1rem; } .header h1 { color: #2c3e50; font-size: 2.5rem; } .subheader { color: #34495e; font-size: 1rem; line-height: 1.2; margin-bottom: 1.5rem; text-align: center; padding: 0 15px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } .image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; margin-bottom: 1rem; } .analyze-button { background-color: #2ecc71 !important; color: white !important; width: 100%; } .clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; } .chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 500px; overflow-y: auto; } .chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; width: 100%; } .groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; } .chat-container { display: flex; flex-direction: column; height: 100%; } .input-row { display: flex; align-items: center; margin-top: 10px; justify-content: space-between; } .input-row > div:first-child { flex-grow: 1; margin-right: 10px; } """ # Create the Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface: gr.HTML( """
Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.