import os import base64 import gradio as gr from PIL import Image, ImageOps import io import json from groq import Groq import logging import cv2 import numpy as np import traceback # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load environment variables GROQ_API_KEY = os.environ.get("GROQ_API_KEY") if not GROQ_API_KEY: logger.error("GROQ_API_KEY is not set in environment variables") raise ValueError("GROQ_API_KEY is not set") # Initialize Groq client client = Groq(api_key=GROQ_API_KEY) def encode_image(image): try: if isinstance(image, str): # If image is a file path with open(image, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') elif isinstance(image, Image.Image): # If image is a PIL Image buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') elif isinstance(image, np.ndarray): # If image is a numpy array (from video) is_success, buffer = cv2.imencode(".png", image) if is_success: return base64.b64encode(buffer).decode('utf-8') else: raise ValueError(f"Unsupported image type: {type(image)}") except Exception as e: logger.error(f"Error encoding image: {str(e)}") raise def resize_image(image, max_size=(800, 800)): """Resize image to avoid exceeding the API size limits.""" try: image.thumbnail(max_size, Image.Resampling.LANCZOS) # Use LANCZOS resampling for better quality return image except Exception as e: logger.error(f"Error resizing image: {str(e)}") raise def extract_frames_from_video(video, frame_points=[0, 0.5, 1], max_size=(800, 800)): """Extract key frames from the video at specific time points.""" cap = cv2.VideoCapture(video) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) duration = frame_count / fps frames = [] for time_point in frame_points: cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000) ret, frame = cap.read() if ret: resized_frame = cv2.resize(frame, max_size) frames.append(resized_frame) cap.release() return frames def analyze_construction_image(images=None, video=None): if not images and video is None: logger.warning("No images or video provided") return [("No input", "Error: Please upload images or a video for analysis.")] try: logger.info("Starting analysis") results = [] if images: for i, image_file in enumerate(images): image = Image.open(image_file.name) # For image uploads, we use image_file.name resized_image = resize_image(image) # Resize image before processing image_data_url = f"data:image/png;base64,{encode_image(resized_image)}" messages = [ { "role": "user", "content": [ { "type": "text", "text": f"Analyze this construction site image (Image {i+1}/{len(images)}). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them." }, { "type": "image_url", "image_url": { "url": image_data_url } } ] } ] completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=1000, top_p=1, stream=False, stop=None ) result = completion.choices[0].message.content results.append((f"Image {i+1} analysis", result)) if video: frames = extract_frames_from_video(video) # Use video directly, as it's a file path for i, frame in enumerate(frames): image_data_url = f"data:image/png;base64,{encode_image(frame)}" messages = [ { "role": "user", "content": [ { "type": "text", "text": f"Analyze this frame from a construction site video (Frame {i+1}/5). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them." }, { "type": "image_url", "image_url": { "url": image_data_url } } ] } ] completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=1000, top_p=1, stream=False, stop=None ) result = completion.choices[0].message.content results.append((f"Video frame {i+1} analysis", result)) logger.info("Analysis completed successfully") return results except Exception as e: logger.error(f"Error during analysis: {str(e)}") logger.error(traceback.format_exc()) # Log the full traceback for debugging return [("Analysis error", f"Error during analysis: {str(e)}")] def chat_about_image(message, chat_history): try: # Prepare the conversation history for the API messages = [ {"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."}, ] # Add chat history to messages for human, ai in chat_history: if human: messages.append({"role": "user", "content": human}) if ai: messages.append({"role": "assistant", "content": ai}) # Add the new user message messages.append({"role": "user", "content": message}) # Make API call completion = client.chat.completions.create( model="llama-3.2-90b-vision-preview", messages=messages, temperature=0.7, max_tokens=500, top_p=1, stream=False, stop=None ) response = completion.choices[0].message.content chat_history.append((message, response)) return "", chat_history except Exception as e: logger.error(f"Error during chat: {str(e)}") return "", chat_history + [(message, f"Error: {str(e)}")] # Custom CSS for improved styling custom_css = """ .container { max-width: 1200px; margin: auto; padding-top: 1.5rem; } .header { text-align: center; margin-bottom: 1rem; } .header h1 { color: #2c3e50; font-size: 2.5rem; } .subheader { color: #34495e; font-size: 1rem; line-height: 1.2; margin-bottom: 1.5rem; text-align: center; padding: 0 15px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } .image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; margin-bottom: 1rem; } .analyze-button { background-color: #2ecc71 !important; color: white !important; width: 100%; } .clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; } .chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 500px; overflow-y: auto; } .chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; width: 100%; } .groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; } .chat-container { display: flex; flex-direction: column; height: 100%; } .input-row { display: flex; align-items: center; margin-top: 10px; justify-content: space-between; } .input-row > div:first-child { flex-grow: 1; margin-right: 10px; } """ # Create the Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface: gr.HTML( """
Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.