capradeepgujaran
commited on
Commit
•
10b5661
1
Parent(s):
2768978
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,95 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
from transformers import AutoProcessor, LlamaForCausalLM, LlamaTokenizer
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
def analyze_construction_image(image):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Create the Gradio interface
|
37 |
iface = gr.Interface(
|
38 |
fn=analyze_construction_image,
|
39 |
-
inputs=gr.Image(type="pil"),
|
40 |
outputs=[
|
41 |
gr.Textbox(label="Snag Category"),
|
42 |
gr.Textbox(label="Snag Description"),
|
43 |
gr.Textbox(label="Steps to Desnag")
|
44 |
],
|
45 |
-
title="Construction Image Analyzer",
|
46 |
-
description="Upload a construction site image to identify issues and get desnag steps."
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
# Launch the app
|
50 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import requests
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
import io
|
|
|
7 |
|
8 |
+
# Load environment variables
|
9 |
+
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
10 |
+
GROQ_API_URL = "https://api.groq.com/v1/chat/completions"
|
11 |
+
|
12 |
+
def encode_image(image_path):
|
13 |
+
with open(image_path, "rb") as image_file:
|
14 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
15 |
|
16 |
def analyze_construction_image(image):
|
17 |
+
if image is None:
|
18 |
+
return "Error: No image uploaded", "", ""
|
19 |
+
|
20 |
+
try:
|
21 |
+
# Convert PIL Image to base64
|
22 |
+
buffered = io.BytesIO()
|
23 |
+
image.save(buffered, format="PNG")
|
24 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
25 |
+
|
26 |
+
# Prepare the message for Groq API
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "system",
|
30 |
+
"content": "You are an AI assistant specialized in analyzing construction site images. Identify issues, categorize them, and provide steps to resolve them."
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": [
|
35 |
+
{
|
36 |
+
"type": "text",
|
37 |
+
"text": "Analyze this construction image. Identify the snag category, provide a detailed snag description, and list steps to desnag."
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"type": "image_url",
|
41 |
+
"image_url": f"data:image/png;base64,{img_str}"
|
42 |
+
}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
]
|
46 |
+
|
47 |
+
# Make API request to Groq
|
48 |
+
headers = {
|
49 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
50 |
+
"Content-Type": "application/json"
|
51 |
+
}
|
52 |
+
data = {
|
53 |
+
"model": "llama3-2-vision-90b", # Adjust model name if necessary
|
54 |
+
"messages": messages,
|
55 |
+
"max_tokens": 300,
|
56 |
+
"temperature": 0.7
|
57 |
+
}
|
58 |
+
|
59 |
+
response = requests.post(GROQ_API_URL, headers=headers, json=data)
|
60 |
+
response.raise_for_status()
|
61 |
+
|
62 |
+
result = response.json()["choices"][0]["message"]["content"]
|
63 |
+
|
64 |
+
# Parse the result
|
65 |
+
lines = result.split('\n')
|
66 |
+
snag_category = lines[0] if len(lines) > 0 else "N/A"
|
67 |
+
snag_description = lines[1] if len(lines) > 1 else "N/A"
|
68 |
+
desnag_steps = "\n".join(lines[2:]) if len(lines) > 2 else "N/A"
|
69 |
+
|
70 |
+
return snag_category, snag_description, desnag_steps
|
71 |
+
except Exception as e:
|
72 |
+
return f"Error: {str(e)}", "", ""
|
73 |
|
74 |
# Create the Gradio interface
|
75 |
iface = gr.Interface(
|
76 |
fn=analyze_construction_image,
|
77 |
+
inputs=gr.Image(type="pil", label="Upload Construction Image"),
|
78 |
outputs=[
|
79 |
gr.Textbox(label="Snag Category"),
|
80 |
gr.Textbox(label="Snag Description"),
|
81 |
gr.Textbox(label="Steps to Desnag")
|
82 |
],
|
83 |
+
title="Construction Image Analyzer (Llama 3.2-Vision via Groq)",
|
84 |
+
description="Upload a construction site image to identify issues and get desnag steps using Llama 3.2-Vision technology through Groq API.",
|
85 |
+
examples=[
|
86 |
+
["example_image1.jpg"],
|
87 |
+
["example_image2.jpg"]
|
88 |
+
],
|
89 |
+
cache_examples=True,
|
90 |
+
theme="default"
|
91 |
)
|
92 |
|
93 |
# Launch the app
|
94 |
+
if __name__ == "__main__":
|
95 |
+
iface.launch()
|