capradeepgujaran's picture
Update app.py
74cd746 verified
raw
history blame
7.66 kB
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY is not set in environment variables")
raise ValueError("GROQ_API_KEY is not set")
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)
def encode_image(image):
try:
if isinstance(image, str): # If image is a file path
with open(image, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
elif isinstance(image, Image.Image): # If image is a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
else:
raise ValueError(f"Unsupported image type: {type(image)}")
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise
def analyze_construction_image(image):
if image is None:
logger.warning("No image provided")
return [(None, "Error: No image uploaded")]
try:
logger.info("Starting image analysis")
image_data_url = f"data:image/png;base64,{encode_image(image)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Analyze this construction site image. Identify any issues or snags, categorize them, provide a detailed description, and suggest steps to resolve them. Format your response as a JSON object with keys 'snag_category', 'snag_description', and 'desnag_steps' (as an array)."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
logger.info("Sending request to Groq API")
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None
)
logger.info("Received response from Groq API")
result = completion.choices[0].message.content
logger.debug(f"Raw API response: {result}")
# Try to parse the result as JSON
try:
parsed_result = json.loads(result)
except json.JSONDecodeError:
logger.error("Failed to parse API response as JSON")
return [(None, "Error: Invalid response format")]
snag_category = str(parsed_result.get('snag_category', 'N/A'))
snag_description = str(parsed_result.get('snag_description', 'N/A'))
# Ensure desnag_steps is a list of strings
desnag_steps = parsed_result.get('desnag_steps', ['N/A'])
if not isinstance(desnag_steps, list):
desnag_steps = [str(desnag_steps)]
else:
desnag_steps = [str(step) for step in desnag_steps]
desnag_steps_str = '\n'.join(desnag_steps)
logger.info("Analysis completed successfully")
# Initialize chat history with analysis results
chat_history = [
(None, f"Image Analysis Results:\n\nSnag Category: {snag_category}\n\nSnag Description: {snag_description}\n\nSteps to Desnag:\n{desnag_steps_str}")
]
return chat_history
except Exception as e:
logger.error(f"Error during image analysis: {str(e)}")
return [(None, f"Error: {str(e)}")]
def chat_about_image(message, chat_history):
try:
# Prepare the conversation history for the API
messages = [
{"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
]
# Add chat history to messages
for human, ai in chat_history:
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
# Add the new user message
messages.append({"role": "user", "content": message})
# Make API call
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
response = completion.choices[0].message.content
chat_history.append((message, response))
return "", chat_history
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return "", chat_history + [(message, f"Error: {str(e)}")]
custom_css = """
.container {
max-width: 1000px;
margin: auto;
padding-top: 1.5rem;
}
.header {
text-align: center;
margin-bottom: 2rem;
}
.header h1 {
color: #2c3e50;
font-size: 2.5rem;
}
.subheader {
color: #34495e;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.image-container {
border: 2px dashed #3498db;
border-radius: 10px;
padding: 1rem;
text-align: center;
}
.analyze-button {
background-color: #2ecc71 !important;
color: white !important;
}
.clear-button {
background-color: #e74c3c !important;
color: white !important;
}
.chatbot {
border: 1px solid #bdc3c7;
border-radius: 10px;
padding: 1rem;
height: 400px;
overflow-y: auto;
}
.chat-input {
border: 1px solid #bdc3c7;
border-radius: 5px;
padding: 0.5rem;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.HTML(
"""
<div class="container">
<div class="header">
<h1>πŸ—οΈ Construction Image Analyzer with AI Chat</h1>
</div>
<p class="subheader">Upload a construction site image, analyze it for issues, and chat with AI about the findings.</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Construction Image", elem_classes="image-container")
analyze_button = gr.Button("πŸ” Analyze Image", elem_classes="analyze-button")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Analysis Results and Chat", elem_classes="chatbot")
with gr.Row():
msg = gr.Textbox(
label="Ask a question about the image",
placeholder="Type your question here and press Enter...",
show_label=False,
elem_classes="chat-input"
)
clear = gr.Button("πŸ—‘οΈ Clear Chat", elem_classes="clear-button")
analyze_button.click(
analyze_construction_image,
inputs=[image_input],
outputs=[chatbot]
)
msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the app
if __name__ == "__main__":
iface.launch(debug=True)