capradeepgujaran's picture
Update app.py
00759b9 verified
raw
history blame
10.4 kB
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging
import cv2
import numpy as np
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY is not set in environment variables")
raise ValueError("GROQ_API_KEY is not set")
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)
def encode_image(image):
try:
if isinstance(image, str): # If image is a file path
with open(image, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
elif isinstance(image, Image.Image): # If image is a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
elif isinstance(image, np.ndarray): # If image is a numpy array (from video)
is_success, buffer = cv2.imencode(".png", image)
if is_success:
return base64.b64encode(buffer).decode('utf-8')
else:
raise ValueError(f"Unsupported image type: {type(image)}")
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise
def analyze_construction_image(images, video=None):
if not images and video is None:
logger.warning("No images or video provided")
return [("No input", "Error: Please upload images or a video for analysis.")]
try:
logger.info("Starting analysis")
results = []
if images:
for i, image in enumerate(images):
image_data_url = f"data:image/png;base64,{encode_image(image)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Analyze this construction site image (Image {i+1}/{len(images)}). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
result = completion.choices[0].message.content
results.append((f"Image {i+1} analysis", result))
if video:
cap = cv2.VideoCapture(video.name)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
duration = frame_count / fps
# Analyze frames at 0%, 25%, 50%, 75%, and 100% of the video duration
for i, time_point in enumerate([0, 0.25, 0.5, 0.75, 1]):
cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000)
ret, frame = cap.read()
if ret:
image_data_url = f"data:image/png;base64,{encode_image(frame)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Analyze this frame from a construction site video (Frame {i+1}/5 at {time_point*100}% of video duration). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
result = completion.choices[0].message.content
results.append((f"Video frame {i+1} analysis", result))
cap.release()
logger.info("Analysis completed successfully")
return results
except Exception as e:
logger.error(f"Error during analysis: {str(e)}")
logger.error(traceback.format_exc())
error_message = f"Error during analysis: {str(e)}. Please try again or contact support if the issue persists."
return [("Analysis error", error_message)]
def chat_about_image(message, chat_history):
try:
# Prepare the conversation history for the API
messages = [
{"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
]
# Add chat history to messages
for human, ai in chat_history:
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
# Add the new user message
messages.append({"role": "user", "content": message})
# Make API call
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
response = completion.choices[0].message.content
chat_history.append((message, response))
return "", chat_history
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return "", chat_history + [(message, f"Error: {str(e)}")]
# Custom CSS for improved styling
custom_css = """
.container { max-width: 1200px; margin: auto; padding-top: 1.5rem; }
.header { text-align: center; margin-bottom: 1rem; }
.header h1 { color: #2c3e50; font-size: 2.5rem; }
.subheader {
color: #34495e;
font-size: 1rem;
line-height: 1.2;
margin-bottom: 1.5rem;
text-align: center;
padding: 0 15px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; }
.analyze-button { background-color: #2ecc71 !important; color: white !important; }
.clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; }
.chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 400px; overflow-y: auto; }
.chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; }
.groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; }
.chat-container { display: flex; flex-direction: column; }
.input-row { display: flex; align-items: center; margin-top: 10px; }
.input-row > div:first-child { flex-grow: 1; margin-right: 10px; }
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.HTML(
"""
<div class="container">
<div class="header">
<h1>πŸ—οΈ Construction Site Safety Analyzer</h1>
</div>
<p class="subheader">Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.File(label="Upload Construction Site Images", file_count="multiple", type="file", elem_classes="image-container")
video_input = gr.Video(label="Upload Construction Site Video", elem_classes="image-container")
analyze_button = gr.Button("πŸ” Analyze Safety Hazards", elem_classes="analyze-button")
with gr.Column(scale=2):
with gr.Group(elem_classes="chat-container"):
chatbot = gr.Chatbot(label="Safety Analysis Results and Expert Chat", elem_classes="chatbot")
with gr.Row(elem_classes="input-row"):
msg = gr.Textbox(
label="Ask about safety measures or regulations",
placeholder="E.g., 'What OSHA guidelines apply to this hazard?'",
show_label=False,
elem_classes="chat-input"
)
clear = gr.Button("πŸ—‘οΈ Clear", elem_classes="clear-button")
def update_chat(history, new_messages):
history = history or []
history.extend(new_messages)
return history
analyze_button.click(
analyze_construction_image,
inputs=[image_input, video_input],
outputs=[chatbot],
postprocess=lambda x: update_chat(chatbot.value, x)
)
msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
gr.HTML(
"""
<div class="groq-badge">Powered by Groq</div>
"""
)
# Launch the app
if __name__ == "__main__":
iface.launch(debug=True)