AbdulMoid commited on
Commit
b1f106d
1 Parent(s): 2ba4a2f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -60
app.py CHANGED
@@ -1,63 +1,35 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- # Update the model name here
8
- client = InferenceClient(model="nvidia/Llama3-ChatQA-1.5-8B")
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
  if __name__ == "__main__":
63
- demo.launch(share=True) # Ensure share=True to get a public URL
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ from fastapi import FastAPI
4
+ from pydantic import BaseModel
5
+ import uvicorn
6
+
7
+ # Load the model
8
+ model_name = "nvidia/Llama3-ChatQA-1.5-8B"
9
+ qa_pipeline = pipeline("text-generation", model=model_name)
10
+
11
+ # FastAPI app
12
+ app = FastAPI()
13
+
14
+ class Query(BaseModel):
15
+ inputs: str
16
+
17
+ @app.post("/predict")
18
+ async def predict(query: Query):
19
+ response = qa_pipeline(query.inputs, max_length=250)
20
+ return {"generated_text": response[0]["generated_text"]}
21
+
22
+ # Gradio app
23
+ def generate_answer(question):
24
+ response = qa_pipeline(question, max_length=250)
25
+ return response[0]["generated_text"]
26
+
27
+ iface = gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Llama3 ChatQA")
28
+
29
+ # Mount Gradio app to FastAPI
30
+ @app.get("/")
31
+ async def gradio_app():
32
+ return gr.mount_gradio_app(app, iface)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  if __name__ == "__main__":
35
+ uvicorn.run(app, host="0.0.0.0", port=7860)