Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import uvicorn
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model_name = "nvidia/Llama3-ChatQA-1.5-8B"
|
9 |
+
qa_pipeline = pipeline("text-generation", model=model_name)
|
10 |
+
|
11 |
+
# FastAPI app
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
class Query(BaseModel):
|
15 |
+
inputs: str
|
16 |
+
|
17 |
+
@app.post("/predict")
|
18 |
+
async def predict(query: Query):
|
19 |
+
response = qa_pipeline(query.inputs, max_length=250)
|
20 |
+
return {"generated_text": response[0]["generated_text"]}
|
21 |
+
|
22 |
+
# Gradio app
|
23 |
+
def generate_answer(question):
|
24 |
+
response = qa_pipeline(question, max_length=250)
|
25 |
+
return response[0]["generated_text"]
|
26 |
+
|
27 |
+
iface = gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Llama3 ChatQA")
|
28 |
+
|
29 |
+
# Mount Gradio app to FastAPI
|
30 |
+
@app.get("/")
|
31 |
+
async def gradio_app():
|
32 |
+
return gr.mount_gradio_app(app, iface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|