Spaces:
Sleeping
Sleeping
# !pip install gr-nlp-toolkit | |
from gr_nlp_toolkit import Pipeline | |
# Instantiate the Pipeline | |
nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g") | |
def greeklish_to_greek(text: str) -> str: | |
""" | |
Convert Greeklish (Greek written with Latin characters) to Greek. ("larisa" -> "λαρισα") | |
Args: | |
text (str): The Greeklish text to convert. | |
Returns: | |
str: The transliterated Greek text. | |
Examples: | |
>>> greeklish_to_greek("H thessaloniki einai wraia polh") | |
'η θεσσαλονικη ειναι ωραια πολη' | |
""" | |
doc = nlp_pos_ner_dp_with_g2g(text) | |
return " ".join([token.text for token in doc.tokens]) | |
def process_ner(text: str) -> dict: | |
""" | |
Process text to extract Named Entity Recognition (NER) information. | |
Args: | |
text (str): The text to process. | |
Returns: | |
dict: A dictionary with the text and the NER value. | |
Examples: | |
>>> process_ner("Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022") | |
{ | |
'η': 'O', | |
'αργεντινη': 'S-ORG', | |
'κερδισε': 'O', | |
'το': 'O', | |
'παγκοσμιο': 'B-EVENT', | |
'κυπελλο': 'E-EVENT', | |
'το': 'O', | |
'2022': 'S-DATE' | |
} | |
NER Possible Labels List: | |
ner_labels = [ | |
'O', 'S-GPE', 'S-ORG', 'S-CARDINAL', 'B-ORG', 'E-ORG', 'B-DATE', 'E-DATE', 'S-NORP', | |
'B-GPE', 'E-GPE', 'S-EVENT', 'S-DATE', 'S-PRODUCT', 'S-LOC', 'I-ORG', 'S-PERSON', | |
'S-ORDINAL', 'B-PERSON', 'I-PERSON', 'E-PERSON', 'B-LAW', 'I-LAW', 'E-LAW', 'B-MONEY', | |
'I-MONEY', 'E-MONEY', 'B-EVENT', 'I-EVENT', 'E-EVENT', 'B-FAC', 'E-FAC', 'I-DATE', | |
'S-PERCENT', 'B-QUANTITY', 'E-QUANTITY', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'E-WORK_OF_ART', | |
'I-FAC', 'S-LAW', 'S-TIME', 'B-LOC', 'E-LOC', 'I-LOC', 'S-FAC', 'B-TIME', 'E-TIME', | |
'S-WORK_OF_ART', 'B-PRODUCT', 'E-PRODUCT', 'B-CARDINAL', 'E-CARDINAL', 'S-MONEY', | |
'S-LANGUAGE', 'I-TIME', 'I-PRODUCT', 'I-GPE', 'I-QUANTITY', 'B-NORP', 'E-NORP', | |
'S-QUANTITY', 'B-PERCENT', 'I-PERCENT', 'E-PERCENT', 'I-CARDINAL', 'B-ORDINAL', | |
'I-ORDINAL', 'E-ORDINAL' | |
] | |
""" | |
doc = nlp_pos_ner_dp_with_g2g(text) | |
ner_dict = {token.text: token.ner for token in doc.tokens} | |
return ner_dict | |
def process_pos(text: str) -> dict: | |
""" | |
Process text to extract Part-of-Speech information (UPOS tags and morphological features). | |
# Complete list of UPOS (https://universaldependencies.org/u/pos/ & https://github.com/nlpaueb/gr-nlp-toolkit/blob/main/gr_nlp_toolkit/configs/pos_labels.py) | |
ADJ: adjective | |
ADP: adposition | |
ADV: adverb | |
AUX: auxiliary | |
CCONJ: coordinating conjunction | |
DET: determiner | |
INTJ: interjection | |
NOUN: noun | |
NUM: numeral | |
PART: particle | |
PRON: pronoun | |
PROPN: proper noun | |
PUNCT: punctuation | |
SCONJ: subordinating conjunction | |
SYM: symbol | |
VERB: verb | |
X: other | |
# Complete list of the morphological features can be found here: (https://github.com/nlpaueb/gr-nlp-toolkit/blob/main/gr_nlp_toolkit/configs/pos_labels.py | |
Due to the large number of features, only the most common ones are listed here: | |
- Aspect | |
- Case | |
- Definite | |
- Mood | |
- Number | |
- Person | |
- PronType | |
- Tense | |
- Gender | |
- VerbForm | |
- Voice | |
Args: | |
text (str): The text to process. | |
Returns: | |
dict: A dictionary with the text and the POS information, containing UPOS and morphological features as keys. | |
Examples: | |
>>> process_pos("Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter.") | |
{ | |
'μου': {'UPOS': 'PRON', 'Morphological_Features': {'Case': 'Gen', 'Gender': 'Masc', 'Number': 'Sing', 'Person': '1', 'Poss': '_', 'PronType': 'Prs'}}, | |
'αρεσει': {'UPOS': 'VERB', 'Morphological_Features': {'Aspect': 'Imp', 'Case': '_', 'Gender': '_', 'Mood': 'Ind', 'Number': 'Sing', 'Person': '3', 'Tense': 'Pres', 'VerbForm': 'Fin', 'Voice': 'Act'}}, | |
'να': {'UPOS': 'AUX', 'Morphological_Features': {'Aspect': '_', 'Mood': '_', 'Number': '_', 'Person': '_', 'Tense': '_', 'VerbForm': '_', 'Voice': '_'}}, | |
'διαβαζω': {'UPOS': 'VERB', 'Morphological_Features': {'Aspect': 'Imp', 'Case': '_', 'Gender': '_', 'Mood': 'Ind', 'Number': 'Sing', 'Person': '1', 'Tense': 'Pres', 'VerbForm': 'Fin', 'Voice': 'Act'}}, | |
'τα': {'UPOS': 'DET', 'Morphological_Features': {'Case': 'Acc', 'Definite': 'Def', 'Gender': 'Neut', 'Number': 'Plur', 'PronType': 'Art'}}, | |
'post': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}}, | |
'του': {'UPOS': 'DET', 'Morphological_Features': {'Case': 'Gen', 'Definite': 'Def', 'Gender': 'Masc', 'Number': 'Sing', 'PronType': 'Art'}}, | |
'andrew': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}}, | |
'ng': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}}, | |
'στο': {'UPOS': '_', 'Morphological_Features': {}}, | |
'twitter': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}}, | |
'.': {'UPOS': 'PUNCT', 'Morphological_Features': {}} | |
} | |
""" | |
doc = nlp_pos_ner_dp_with_g2g(text) | |
pos_dict = { | |
token.text: {"UPOS": token.upos, "Morphological_Features": token.feats} | |
for token in doc.tokens | |
} | |
return pos_dict | |
def process_dp(text: str) -> dict: | |
""" | |
Process text to extract Dependency Parsing information. | |
This method analyzes the given text and returns dependency parsing information for each word, | |
including its syntactic head and dependency relation. | |
Args: | |
text (str): The text to process. | |
Returns: | |
dict: A dictionary where each key is a word from the input text, and the value is another | |
dictionary containing: | |
- 'Head': The position of the syntactic head of the word (0 indicates the root). | |
- 'Deprel': The dependency relation to the head. | |
Examples: | |
>>> process_dp("Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη.") | |
{ | |
'προτιμω': {'Head': 0, 'Deprel': 'root'}, | |
'την': {'Head': 4, 'Deprel': 'det'}, | |
'πρωινη': {'Head': 4, 'Deprel': 'amod'}, | |
'πτηση': {'Head': 1, 'Deprel': 'obj'}, | |
'απο': {'Head': 7, 'Deprel': 'case'}, | |
'την': {'Head': 7, 'Deprel': 'det'}, | |
'αθηνα': {'Head': 4, 'Deprel': 'nmod'}, | |
'στη': {'Head': 9, 'Deprel': 'case'}, | |
'θεσσαλονικη': {'Head': 4, 'Deprel': 'nmod'}, | |
'.': {'Head': 1, 'Deprel': 'punct'} | |
} | |
Dependency Parsing Possible Labels List: | |
dp_labels = [ | |
'obl', 'obj', 'dep', 'mark', 'case', 'flat', 'nummod', 'obl:arg', 'punct', 'cop', | |
'acl:relcl', 'expl', 'nsubj', 'csubj:pass', 'root', 'advmod', 'nsubj:pass', 'ccomp', | |
'conj', 'amod', 'xcomp', 'aux', 'appos', 'csubj', 'fixed', 'nmod', 'iobj', 'parataxis', | |
'orphan', 'det', 'advcl', 'vocative', 'compound', 'cc', 'discourse', 'acl', 'obl:agent' | |
] | |
""" | |
doc = nlp_pos_ner_dp_with_g2g(text) | |
dp_dict = { | |
token.text: {"Head": token.head, "Deprel": token.deprel} for token in doc.tokens | |
} | |
return dp_dict | |