File size: 14,407 Bytes
7928a0f
 
 
 
 
 
 
 
 
6956e73
7928a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe37a06
7928a0f
 
 
 
 
 
 
 
eca840e
7928a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe37a06
7928a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddb96
7928a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe37a06
7928a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from typing import Dict, List

from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import RedirectResponse
from gr_nlp_toolkit import Pipeline
from pydantic import BaseModel, Field

app = FastAPI(
    title="The Grεεk NLP API 🇬🇷",
    description="State-of-the-art API for Greek NLP tasks including Greeklish to Greek conversion (G2G), Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and Dependency Parsing (DP). The API is powered by the Grεεk NLP Toolkit ([https://github.com/nlpaueb/gr-nlp-toolkit/](https://github.com/nlpaueb/gr-nlp-toolkit/)), which is also available via PyPI (`pip install gr-nlp-toolkit`). ",
    version="1.0.0",
    contact={
        "name": "Natural Language Processing Group - Athens University of Economics and Business (AUEB)",
        "url": "http://nlp.cs.aueb.gr/",
        "api_author": "Lefteris Loukas",
    },
)

# Instantiate the Pipeline
nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g")


# Pydantic models for responses
class G2GOutput(BaseModel):
    greek_text: str = Field(
        ...,
        example="η θεσσαλονικη ειναι ωραια πολη",
        description="Converted Greek text",
    )


class NERItem(BaseModel):
    token: str = Field(..., example="αργεντινη")
    ner_value: str = Field(..., example="S-ORG")


class POSItem(BaseModel):
    token: str = Field(..., example="μου")
    upos: str = Field(..., example="PRON")
    morphological_features: Dict[str, str] = Field(
        ...,
        example={
            "Case": "Gen",
            "Gender": "Masc",
            "Number": "Sing",
            "Person": "1",
            "Poss": "_",
            "PronType": "Prs",
        },
    )


class POSResponse(BaseModel):
    pos_results: List[POSItem] = Field(
        ...,
        description="Part-of-Speech tagging information",
        example=[
            {
                "token": "μου",
                "upos": "PRON",
                "morphological_features": {
                    "Case": "Gen",
                    "Gender": "Masc",
                    "Number": "Sing",
                    "Person": "1",
                    "Poss": "_",
                    "PronType": "Prs",
                },
            },
            {
                "token": "αρεσει",
                "upos": "VERB",
                "morphological_features": {
                    "Aspect": "Imp",
                    "Case": "_",
                    "Gender": "_",
                    "Mood": "Ind",
                    "Number": "Sing",
                    "Person": "3",
                    "Tense": "Pres",
                    "VerbForm": "Fin",
                    "Voice": "Act",
                },
            },
            {
                "token": "να",
                "upos": "AUX",
                "morphological_features": {
                    "Aspect": "_",
                    "Mood": "_",
                    "Number": "_",
                    "Person": "_",
                    "Tense": "_",
                    "VerbForm": "_",
                    "Voice": "_",
                },
            },
            {
                "token": "διαβαζω",
                "upos": "VERB",
                "morphological_features": {
                    "Aspect": "Imp",
                    "Case": "_",
                    "Gender": "_",
                    "Mood": "Ind",
                    "Number": "Sing",
                    "Person": "1",
                    "Tense": "Pres",
                    "VerbForm": "Fin",
                    "Voice": "Act",
                },
            },
            {
                "token": "τα",
                "upos": "DET",
                "morphological_features": {
                    "Case": "Acc",
                    "Definite": "Def",
                    "Gender": "Neut",
                    "Number": "Plur",
                    "PronType": "Art",
                },
            },
            {
                "token": "post",
                "upos": "X",
                "morphological_features": {"Foreign": "Yes"},
            },
            {
                "token": "του",
                "upos": "DET",
                "morphological_features": {
                    "Case": "Gen",
                    "Definite": "Def",
                    "Gender": "Masc",
                    "Number": "Sing",
                    "PronType": "Art",
                },
            },
            {
                "token": "andrew",
                "upos": "X",
                "morphological_features": {"Foreign": "Yes"},
            },
            {
                "token": "ng",
                "upos": "X",
                "morphological_features": {"Foreign": "Yes"},
            },
            {"token": "στο", "upos": "_", "morphological_features": {}},
            {
                "token": "twitter",
                "upos": "X",
                "morphological_features": {"Foreign": "Yes"},
            },
            {"token": ".", "upos": "PUNCT", "morphological_features": {}},
        ],
    )


class DPItem(BaseModel):
    token: str = Field(..., example="προτιμω")
    head: int = Field(..., example=0)
    deprel: str = Field(..., example="root")


class DPResponse(BaseModel):
    dp_results: List[DPItem] = Field(
        ...,
        description="Dependency Parsing information",
        example=[
            {"token": "προτιμω", "head": 0, "deprel": "root"},
            {"token": "την", "head": 4, "deprel": "det"},
            {"token": "πρωινη", "head": 4, "deprel": "amod"},
            {"token": "πτηση", "head": 1, "deprel": "obj"},
            {"token": "απο", "head": 7, "deprel": "case"},
            {"token": "την", "head": 7, "deprel": "det"},
            {"token": "αθηνα", "head": 4, "deprel": "nmod"},
            {"token": "στη", "head": 9, "deprel": "case"},
            {"token": "θεσσαλονικη", "head": 4, "deprel": "nmod"},
            {"token": ".", "head": 1, "deprel": "punct"},
        ],
    )


# API endpoints
@app.post("/g2g", response_model=G2GOutput, summary="Convert Greeklish to Greek (G2G)")
async def greeklish_to_greek(
    text: str = Query(
        ...,
        description="The Greeklish text to convert",
        example="H thessaloniki einai wraia polh",
    ),
):
    """
    The G2G (Greeklish-to-Greek) endpoint takes Greeklish text (Greek written with Latin characters) as input and transliterates it to Greek text.
    """
    try:
        greek_text = " ".join(
            [token.text for token in nlp_pos_ner_dp_with_g2g(text).tokens]
        )
        return G2GOutput(greek_text=greek_text)
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


class NERResponse(BaseModel):
    ner_results: List[NERItem] = Field(
        ...,
        description="Named Entity Recognition information",
        example=[
            {"token": "η", "ner_value": "O"},
            {"token": "αργεντινη", "ner_value": "S-ORG"},
            {"token": "κερδισε", "ner_value": "O"},
            {"token": "το", "ner_value": "O"},
            {"token": "παγκοσμιο", "ner_value": "B-EVENT"},
            {"token": "κυπελλο", "ner_value": "E-EVENT"},
            {"token": "το", "ner_value": "O"},
            {"token": "2022", "ner_value": "S-DATE"},
        ],
    )


# @app.post("/ner", response_model=List[NERItem], summary="Named Entity Recognition")
@app.post("/ner", response_model=NERResponse, summary="Named Entity Recognition (NER)")
async def process_ner(
    text: str = Query(
        ...,
        description="The text to process for NER",
        example="Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022",
    ),
):
    """
    The NER endpoint takes Greek text as input and returns a list of dictionaries with the token and the NER value.

    Named Entity Recognition (NER) Labels:
    ```python
        ner_possible_labels = [
            'O', 'S-GPE', 'S-ORG', 'S-CARDINAL', 'B-ORG', 'E-ORG', 'B-DATE', 'E-DATE', 'S-NORP',
            'B-GPE', 'E-GPE', 'S-EVENT', 'S-DATE', 'S-PRODUCT', 'S-LOC', 'I-ORG', 'S-PERSON',
            'S-ORDINAL', 'B-PERSON', 'I-PERSON', 'E-PERSON', 'B-LAW', 'I-LAW', 'E-LAW', 'B-MONEY',
            'I-MONEY', 'E-MONEY', 'B-EVENT', 'I-EVENT', 'E-EVENT', 'B-FAC', 'E-FAC', 'I-DATE',
            'S-PERCENT', 'B-QUANTITY', 'E-QUANTITY', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'E-WORK_OF_ART',
            'I-FAC', 'S-LAW', 'S-TIME', 'B-LOC', 'E-LOC', 'I-LOC', 'S-FAC', 'B-TIME', 'E-TIME',
            'S-WORK_OF_ART', 'B-PRODUCT', 'E-PRODUCT', 'B-CARDINAL', 'E-CARDINAL', 'S-MONEY',
            'S-LANGUAGE', 'I-TIME', 'I-PRODUCT', 'I-GPE', 'I-QUANTITY', 'B-NORP', 'E-NORP',
            'S-QUANTITY', 'B-PERCENT', 'I-PERCENT', 'E-PERCENT', 'I-CARDINAL', 'B-ORDINAL',
            'I-ORDINAL', 'E-ORDINAL'
        ]
    ```
    """
    try:
        doc = nlp_pos_ner_dp_with_g2g(text)

        # Create a list of dictionaries, each with "token" and "ner_value"
        ner_list = [
            {"token": token.text, "ner_value": token.ner} for token in doc.tokens
        ]

        return {"ner_results": ner_list}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# @app.post("/pos", response_model=List[POSItem], summary="Part-of-Speech Tagging")
@app.post("/pos", response_model=POSResponse, summary="Part-of-Speech Tagging (POS)")
async def process_pos(
    text: str = Query(
        ...,
        description="The text to process for POS tagging",
        example="Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter.",
    ),
):
    """
    The POS Tagging endpoint analyzes the input text and provides Universal POS (UPOS) tags and detailed morphological features.

    It returns a list of dictionaries with "token", "upos", and "morphological_features" keys.
    The "morphological_features" key contains a dictionary itself with detailed morphological features.

    The UPOS and morphological features are based on the Universal Dependencies (UD) framework: [https://universaldependencies.org/u/pos/](https://universaldependencies.org/u/pos/)

    Complete list of the Universal POS (UPOS) tags and morphological features:
    ```python
        {'ADJ': ['Degree', 'Number', 'Gender', 'Case'],
        'ADP': ['Number', 'Gender', 'Case'],
        'ADV': ['Degree', 'Abbr'],
        'AUX': ['Mood',
                'Aspect',
                'Tense',
                'Number',
                'Person',
                'VerbForm',
                'Voice'],
        'CCONJ': [],
        'DET': ['Number', 'Gender', 'PronType', 'Definite', 'Case'],
        'NOUN': ['Number', 'Gender', 'Abbr', 'Case'],
        'NUM': ['NumType', 'Number', 'Gender', 'Case'],
        'PART': [],
        'PRON': ['Number', 'Gender', 'Person', 'Poss', 'PronType', 'Case'],
        'PROPN': ['Number', 'Gender', 'Case'],
        'PUNCT': [],
        'SCONJ': [],
        'SYM': [],
        'VERB': ['Mood',
                'Aspect',
                'Tense',
                'Number',
                'Gender',
                'Person',
                'VerbForm',
                'Voice',
                'Case'],
        'X': ['Foreign'],
    ```

    ```python
        {'Abbr': ['_', 'Yes'],
        'Aspect': ['Perf', '_', 'Imp'],
        'Case': ['Dat', '_', 'Acc', 'Gen', 'Nom', 'Voc'],
        'Definite': ['Ind', 'Def', '_'],
        'Degree': ['Cmp', 'Sup', '_'],
        'Foreign': ['_', 'Yes'],
        'Gender': ['Fem', 'Masc', '_', 'Neut'],
        'Mood': ['Ind', '_', 'Imp'],
        'NumType': ['Mult', 'Card', '_', 'Ord', 'Sets'],
        'Number': ['Plur', '_', 'Sing'],
        'Person': ['3', '1', '_', '2'],
        'Poss': ['_', 'Yes'],
        'PronType': ['Ind', 'Art', '_', 'Rel', 'Dem', 'Prs', 'Ind,Rel', 'Int'],
        'Tense': ['Pres', 'Past', '_'],
        'VerbForm': ['Part', 'Conv', '_', 'Inf', 'Fin'],
        'Voice': ['Pass', 'Act', '_'],
    ```
    """
    try:
        doc = nlp_pos_ner_dp_with_g2g(text)

        # Create a list of dictionaries, each with "token", "upos", and "morphological_features"
        pos_list = [
            {
                "token": token.text,
                "upos": token.upos,
                "morphological_features": token.feats,
            }
            for token in doc.tokens
        ]

        # return pos_list
        return {"pos_results": pos_list}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# @app.post("/dp", response_model=List[DPItem], summary="Dependency Parsing")
@app.post("/dp", response_model=DPResponse, summary="Dependency Parsing (DP)")
async def process_dp(
    text: str = Query(
        ...,
        description="The text to process for Dependency Parsing",
        example="Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη",
    ),
):
    """
    The Dependency Parsing endpoint analyzes the syntactic structure of the input text.
    It provides the tokens' (syntactic) heads and dependency relations. A head value of 0 indicates the root.
    More specifically, the endpoint returns a list of dictionaries with "token", "head", and "deprel" keys.

    Dependency Parsing Labels:
    ```python
        dp_possible_labels = ['obl', 'obj', 'dep', 'mark', 'case', 'flat', 'nummod', 'obl:arg', 'punct', 'cop',
        'acl:relcl', 'expl', 'nsubj', 'csubj:pass', 'root', 'advmod', 'nsubj:pass', 'ccomp',
        'conj', 'amod', 'xcomp', 'aux', 'appos', 'csubj', 'fixed', 'nmod', 'iobj', 'parataxis',
        'orphan', 'det', 'advcl', 'vocative', 'compound', 'cc', 'discourse', 'acl', 'obl:agent']
    ```
    """
    try:
        doc = nlp_pos_ner_dp_with_g2g(text)

        # Create a list of dictionaries, each with "token", "head", and "deprel"
        dp_list = [
            {"token": token.text, "head": token.head, "deprel": token.deprel}
            for token in doc.tokens
        ]

        return {"dp_results": dp_list}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/", include_in_schema=False)
async def root():
    return RedirectResponse(url="/docs#")


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app)