File size: 13,472 Bytes
b328990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""old name: test_runtime_model6.py"""

import json
import os
import subprocess
import sys
import warnings
from time import time
from typing import Union, Tuple, Any

import pandas as pd
from mmdet.apis import inference_detector
from mmdet.apis import init_detector as det_init_detector
from mmpose.apis import inference_topdown
from mmpose.apis import init_model as pose_init_model
from mmpretrain import ImageClassificationInferencer
from mmpretrain.utils import register_all_modules
from .extensions.vis_pred_save import save_result

register_all_modules()

st = ist = time()
# irt = time() - st
# print(f'==Packages importing time is {irt}s==\n')

print('==Start==')

# DEVICE = 'cuda:0,1,2,3'
DEVICE = 'cpu'
abs_path = os.path.dirname(os.path.abspath(__file__))
yolo_config = os.path.join(abs_path, 'Model6_0_ClothesDetection/mmyolo/configs/custom_dataset/yolov6_s_fast.py')
yolo_checkpoint = os.path.join(abs_path, 'Model6_0_ClothesDetection/mmyolo/work_dirs/yolov6_s_df2_0.4/epoch_64.pth')
pretrain_config = os.path.join(abs_path, 'Model6_2_ProfileRecogition/mmpretrain/configs/resnext101_4xb32_2048e_3c_noF.py')
pretrain_checkpoint = os.path.join(abs_path, 'Model6_2_ProfileRecogition/mmpretrain/work_dirs/'
                                             'resnext101_4xb32_2048e_3c_noF/best_accuracy_top1_epoch_1520.pth')
pose_configs = {
    'short_sleeved_shirt': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb32-60e_deepfashion2_short_sleeved_shirt_256x192.py',
    'long_sleeved_shirt': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-120e_deepfashion2_long_sleeved_shirt_256x192.py',
    'short_sleeved_outwear': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb8-150e_deepfashion2_short_sleeved_outwear_256x192.py',
    'long_sleeved_outwear': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb16-120e_deepfashion2_long_sleeved_outwear_256x192.py',
    'vest': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-120e_deepfashion2_vest_256x192.py',
    'sling': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192.py',
    'shorts': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-210e_deepfashion2_shorts_256x192.py',
    'trousers': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-60e_deepfashion2_trousers_256x192.py',
    'skirt': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-120e_deepfashion2_skirt_256x192.py',
    'short_sleeved_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-150e_deepfashion2_short_sleeved_dress_256x192.py',
    'long_sleeved_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb16-150e_deepfashion2_long_sleeved_dress_256x192.py',
    'vest_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-150e_deepfashion2_vest_dress_256x192.py',
    'sling_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/topdown_heatmap/deepfashion2/td_hm_res50_4xb64-210e_deepfashion2_sling_dress_256x192.py',
}

pose_checkpoints = {
    'short_sleeved_shirt': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb32-60e_deepfashion2_short_sleeved_shirt_256x192/best_PCK_epoch_50.pth',
    'long_sleeved_shirt': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_long_sleeved_shirt_256x192/best_PCK_epoch_60.pth',
    'short_sleeved_outwear': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb8-150e_deepfashion2_short_sleeved_outwear_256x192/best_PCK_epoch_120.pth',
    'long_sleeved_outwear': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb16-120e_deepfashion2_long_sleeved_outwear_256x192/best_PCK_epoch_100.pth',
    'vest': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_vest_256x192/best_PCK_epoch_90.pth',
    'sling': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192/best_PCK_epoch_60.pth',
    'shorts': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-210e_deepfashion2_shorts_256x192/best_PCK_epoch_160.pth',
    'trousers': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-60e_deepfashion2_trousers_256x192/best_PCK_epoch_30.pth',
    'skirt': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_skirt_256x192/best_PCK_epoch_110.pth',
    'short_sleeved_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-150e_deepfashion2_short_sleeved_dress_256x192/best_PCK_epoch_100.pth',
    'long_sleeved_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb16-150e_deepfashion2_long_sleeved_dress_256x192/best_PCK_epoch_120.pth',
    'vest_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-150e_deepfashion2_vest_dress_256x192/best_PCK_epoch_80.pth',
    'sling_dress': 'Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-210e_deepfashion2_sling_dress_256x192/best_PCK_epoch_140.pth',
}

start_load = time()
yolo_inferencer = det_init_detector(yolo_config, yolo_checkpoint, device=DEVICE)
print('=' * 2 + 'The model loading time of MMYolo is {}s'.format(time() - start_load) + '=' * 2)

start_load = time()
pretrain_inferencer = ImageClassificationInferencer(model=pretrain_config,
                                                    pretrained=pretrain_checkpoint,
                                                    device=DEVICE)
print('=' * 2 + 'The model loading time of MMPretrain is {}s'.format(time() - start_load) + '=' * 2)


def get_bbox_results_by_classes(result) -> dict:
    """
    :param result: the result of mmyolo inference
    :return: a dict of bbox results by classes
    """
    bbox_results_by_classes = {
        'short_sleeved_shirt': [],
        'long_sleeved_shirt': [],
        'short_sleeved_outwear': [],
        'long_sleeved_outwear': [],
        'vest': [],
        'sling': [],
        'shorts': [],
        'trousers': [],
        'skirt': [],
        'short_sleeved_dress': [],
        'long_sleeved_dress': [],
        'vest_dress': [],
        'sling_dress': [],
    }
    pred_instances = result.pred_instances
    _bboxes = pred_instances.bboxes
    _labels = pred_instances.labels
    _scores = pred_instances.scores
    labels = _labels[[_scores > 0.3]]
    bboxes = _bboxes[[_scores > 0.3]]
    # use enumerate to get index and value
    for idx, value in enumerate(labels):
        class_name = list(bbox_results_by_classes.keys())[value]
        x1 = bboxes[idx][0]
        y1 = bboxes[idx][1]
        x2 = bboxes[idx][2]
        y2 = bboxes[idx][3]
        bbox_results_by_classes[class_name].append([x1, y1, x2, y2])
    return bbox_results_by_classes


def mmyolo_inference(img: Union[str, list], model) -> tuple:
    mmyolo_st = time()
    result = inference_detector(model, img)
    mmyolo_et = time()

    return result, (mmyolo_et - mmyolo_st)


def mmpose_inference(person_results: dict, use_bbox: bool,
                     mmyolo_cfg_path: str, mmyolo_ckf_path: str,
                     img: str, output_path_root: str, save=True, device='cpu') -> float:
    """
    :param person_results: the result of mmyolo inference
    :param use_bbox: whether to use bbox to inference the pose results
    :param mmyolo_cfg_path: the file path of mmyolo config
    :param mmyolo_ckf_path: the file path of mmyolo checkpoint
    :param img: the path of the image to inference
    :param output_path_root: the root path of the output
    :param save: whether to save the inference result, including the image and the predicted json file.
                 If `save` is False, `output_path_root` will be invalid.
    :param device: the device to inference
    """
    mmpose_st = time()
    poses = {
        'short_sleeved_shirt': {},
        'long_sleeved_shirt': {},
        'short_sleeved_outwear': {},
        'long_sleeved_outwear': {},
        'vest': {},
        'sling': {},
        'shorts': {},
        'trousers': {},
        'skirt': {},
        'short_sleeved_dress': {},
        'long_sleeved_dress': {},
        'vest_dress': {},
        'sling_dress': {}
    }
    for label, person_result in person_results.items():
        if len(person_result) == 0:
            continue
        pose_config = pose_configs[label]
        pose_checkpoint = pose_checkpoints[label]
        if not use_bbox:
            from mmpose.apis import MMPoseInferencer

            warnings.warn('use_bbox is False, '
                          'which means using MMPoseInferencer to inference the pose results without use_bbox '
                          'and may be wrong')
            inferencer = MMPoseInferencer(
                pose2d=pose_config,
                pose2d_weights=pose_checkpoint,
                det_model=mmyolo_cfg_path,
                det_weights=mmyolo_ckf_path
            )
            result_generator = inferencer(img, out_dir='upload_to_web_tmp', return_vis=True)
            result = next(result_generator)
            # print(result)
        else:
            pose_model = pose_init_model(
                pose_config,
                pose_checkpoint,
                device=device
            )
            pose_results = inference_topdown(pose_model, img, person_result, bbox_format='xyxy')
            poses[label]['pose_results'] = pose_results
            poses[label]['pose_model'] = pose_model
    mmpose_et = time()
    if save:

        save_result(img, poses, out_dir=output_path_root)

    return mmpose_et - mmpose_st


def mmpretrain_inference(img: Union[str, list], model) -> tuple:
    mmpretain_st = time()
    cls_result = model(img)
    mmpretain_et = time()
    return cls_result, (mmpretain_et - mmpretain_st)


def main(img_path: str, output_path_root='upload_to_web_tmp', use_bbox=True, device='cpu', test_runtime=False) -> dict:
    """
    :param img_path: the path of the image or the folder of images
    :param output_path_root: the root path of the output
    :param use_bbox: whether to use bbox to inference the pose results
    :param device: the device to inference
    :param test_runtime: whether to test the runtime

    :return: the results of model6_2 in form of dictionary
    """
    if os.path.isdir(img_path):
        img_names = os.listdir(img_path)
        img_paths = [os.path.join(img_path, img_name) for img_name in img_names]
    elif os.path.isfile(img_path):
        img_paths = [img_path]
    else:
        print('==Img_path must be a path of an imgage or a folder!==')
        raise ValueError()

    runtimes = [['img_name',
                 'runtime_mmyolo', 'percent1',
                 'runtime_mmpose', 'percent2',
                 'runtime_mmpretrain', 'percent3',
                 'runtime_total']]

    cls_results = {}

    for img in img_paths:
        print(f'==Start to inference {img}==')
        yolo_result, runtime_mmyolo = mmyolo_inference(img, yolo_inferencer)
        print(f'==mmyolo running time is {runtime_mmyolo}s==')

        person_results = get_bbox_results_by_classes(yolo_result)

        runtime_mmpose = mmpose_inference(
            person_results=person_results,
            use_bbox=use_bbox,
            mmyolo_cfg_path=yolo_config,
            mmyolo_ckf_path=yolo_checkpoint,
            img=img,
            output_path_root=output_path_root,
            save=True,
            device=device
        )
        print(f'mmpose running time is {runtime_mmpose}s')

        cls_result, runtime_mmpretrain = mmpretrain_inference(img, pretrain_inferencer)
        print(f'mmpretrain running time is {runtime_mmpretrain}s')
        cls_results[os.path.basename(img)] = cls_result
        if test_runtime:
            runtime_total = runtime_mmyolo + runtime_mmpose + runtime_mmpretrain
            percent1 = str(round(runtime_mmyolo / runtime_total * 100, 2)) + '%'
            percent2 = str(round(runtime_mmpose / runtime_total * 100, 2)) + '%'
            percent3 = str(round(runtime_mmpretrain / runtime_total * 100, 2)) + '%'
            img_name = os.path.basename(img)
            runtimes.append([img_name,
                             runtime_mmyolo, percent1,
                             runtime_mmpose, percent2,
                             runtime_mmpretrain, percent3,
                             runtime_total])
    if test_runtime:
        df = pd.DataFrame(runtimes, columns=runtimes[0])
        df.to_csv('runtimes.csv', index=False)

    return cls_results


if __name__ == "__main__":
    # main(1)
    main('data-test/')
    # main('data-test/000002.jpg')
    rt = time() - st
    print(f'==Totol time cost is {rt}s==')